
SnuCL User Manual

Center for Manycore Programming
Department of Computer Science and Engineering
Seoul National University, Seoul 151-744, Korea

http://aces.snu.ac.kr

Release 1.3.1 September 2013

Contents

1 Introduction 2

2 Installation 3
2.1 Installing SnuCL CPU . 3
2.2 Installing SnuCL Single . 5
2.3 Installing SnuCL Cluster . 7

3 Using SnuCL 10
3.1 Writing OpenCL applications using SnuCL 10
3.2 Building OpenCL applications using SnuCL 10
3.3 Running OpenCL applications using SnuCL 11

4 Understanding SnuCL 12
4.1 What SnuCL Cluster does with your OpenCL applications 12

5 Known Issues 15

1

Chapter 1

Introduction

SnuCL is an OpenCL framework and freely available, open-source software devel-
oped at Seoul National University.

SnuCL naturally extends the original OpenCL semantics to the heterogeneous
cluster environment. The target cluster consists of a single host node and multi-
ple compute nodes. They are connected by an interconnection network, such as
Gigabit and InfiniBand switches. The host node contains multiple CPU cores and
each compute node consists of multiple CPU cores and multiple GPUs. For such
clusters, SnuCL provides an illusion of a single heterogeneous system for the pro-
grammer. A set of CPU cores, a GPU, or an Intel Xeon Phi coprocessor becomes
an OpenCL compute device. SnuCL allows the application to utilize compute
devices in a compute node as if they were in the host node.

In addition, SnuCL integrates multiple OpenCL platforms from different vendor
implementations into a single platform. It enables OpenCL applications to share
objects (buffers, events, etc.) between compute devices of different vendors.

As a result, SnuCL achieves both high performance and ease of programming in
both a single system (i.e., a single operating system instance) and a heterogeneous
cluster system (i.e., a cluster with many operating system instances).

SnuCL provides three OpenCL platforms:

• SnuCL CPU provides a set of CPU cores as an OpenCL compute device.

• SnuCL Single is an OpenCL platform that integrates all ICD compatible
OpenCL implementations installed in a single system.

• SnuCL Cluster is an OpenCL platform for a heterogeneous cluster. It in-
tegrates all ICD compatible OpenCL implementations in the compute nodes
and provides an illusion of a single heterogeneous system for the programmer.

2

Chapter 2

Installation

SnuCL platforms can be installed separately. To install SnuCL CPU, see Sec-
tion 2.1. To install SnuCL Single, see Section 2.2. To install SnuCL Cluster, see
Section 2.3.

2.1 Installing SnuCL CPU

Prerequisite The OpenCL ICD loader (i.e., libOpenCL.so) should be installed
in the system. If there are other ICD compatible OpenCL implementations in
the system, they may provide the OpenCL ICD loader. Or you can download the
source code of the official OpenCL 1.2 ICD loader from http://www.khronos.

org/registry/cl/.

Installing Download the SnuCL source code from http://snucl.snu.ac.kr.
The package includes the OpenCL ICD driver, the SnuCL CPU runtime, and the
source-to-source translator for a CPU device. Then, untar it and configure shell
environment variables for SnuCL.

user@computer :~/$ tar zxvf snucl .1.3. tar.gz

user@computer :~/$ export SNUCLROOT=$HOME/snucl

user@computer :~/$ export PATH=$PATH:$SNUCLROOT/bin

user@computer :~/$ export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$SNUCLROOT/lib

Build SnuCL CPU using a script named build cpu.sh. It may require a long
time to build the LLVM compiler infrastructure and all OpenCL built-in functions.

user@computer :~/$ cd snucl/build

3

user@computer :~/ snucl/build$./ build_cpu.sh

As a result, the following files will be created:

• snucl/lib/libsnucl cpu.so: the SnuCL CPU runtime

• snucl/bin/clang, snucl/bin/snuclc-merger, snucl/lib/libSnuCLTranslator.a,
snucl/lib/libSnuCLTranslator.so, snucl/lib/libsnucl-builtins-lnx??.a:
components of the source-to-source translator

Then, register SnuCL CPU to the OpenCL ICD loader. This may require the
root permission.

user@computer :~/$ echo libsnucl_cpu.so >

/etc/OpenCL/vendors/snucl_cpu.icd

An example run Test running an OpenCL application and check it runs cor-
rectly. The example run is started on the target system by entering the following
commands:

user@computer :~/$ cd snucl/apps/sample

user@computer :~/ snucl/apps/sample$ make cpu

user@computer :~/ snucl/apps/sample$./ sample

[0] 100

[1] 110

[2] 120

[3] 130

[4] 140

[5] 150

[6] 160

[7] 170

[8] 180

[9] 190

[10] 200

[11] 210

[12] 220

[13] 230

[14] 240

[15] 250

[16] 260

[17] 270

[18] 280

4

[19] 290

[20] 300

[21] 310

[22] 320

[23] 330

[24] 340

[25] 350

[26] 360

[27] 370

[28] 380

[29] 390

[30] 400

[31] 410

user@computer :~/ snucl/apps/sample$

2.2 Installing SnuCL Single

Prerequisite There should be one or more ICD compatible OpenCL implemen-
tations installed in the system, e.g., Intel SDK for OpenCL Applications, AMD
Accelerated Parallel Processing SDK, and NVIDIA OpenCL SDK. They serves
the OpenCL programming environment for each compute device.

Since SnuCL CPU follows the OpenCL ICD extension, it can also be inte-
grated into SnuCL Single. For example, OpenCL applications can use both multi-
core CPUs and NVIDIA GPUs at the same time by integrating SnuCL CPU and
NVIDIA OpenCL SDK.

In addition, the OpenCL ICD loader (i.e., libOpenCL.so) should be installed
in the system. The ICD compatible OpenCL implementations may provide the
OpenCL ICD loader. Or you can download the source code of the official OpenCL
1.2 ICD loader from http://www.khronos.org/registry/cl/.

Installing Download the SnuCL source code from http://snucl.snu.ac.kr.
The package includes the OpenCL ICD driver and the SnuCL Single runtime.
Then, untar it and configure shell environment variables for SnuCL.

user@computer :~/$ tar zxvf snucl .1.3. tar.gz

user@computer :~/$ export SNUCLROOT=$HOME/snucl

user@computer :~/$ export PATH=$PATH:$SNUCLROOT/bin

user@computer :~/$ export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$SNUCLROOT/lib

5

Build SnuCL Single using a script named build single.sh.

user@computer :~/$ cd snucl/build

user@computer :~/ snucl/build$./ build_single.sh

As a result, the snucl/lib/libsnucl single.so file will be created.
Then, register SnuCL Single to the OpenCL ICD loader. This may require the

root permission.

user@computer :~/$ echo libsnucl_single.so >

/etc/OpenCL/vendors/snucl_single.icd

An example run Test running an OpenCL application and check it runs cor-
rectly. The example run is started on the target system by entering the following
commands:

user@computer :~/$ cd snucl/apps/sample

user@computer :~/ snucl/apps/sample$ make single

user@computer :~/ snucl/apps/sample$./ sample

[0] 100

[1] 110

[2] 120

[3] 130

[4] 140

[5] 150

[6] 160

[7] 170

[8] 180

[9] 190

[10] 200

[11] 210

[12] 220

[13] 230

[14] 240

[15] 250

[16] 260

[17] 270

[18] 280

[19] 290

[20] 300

[21] 310

6

[22] 320

[23] 330

[24] 340

[25] 350

[26] 360

[27] 370

[28] 380

[29] 390

[30] 400

[31] 410

user@computer :~/ snucl/apps/sample$

2.3 Installing SnuCL Cluster

Prerequisite There should be one or more ICD compatible OpenCL implemen-
tations installed in the compute nodes, e.g., Intel SDK for OpenCL Applications,
AMD Accelerated Parallel Processing SDK, and NVIDIA OpenCL SDK. They
serves the OpenCL programming environment for each compute device.

Since SnuCL CPU follows the OpenCL ICD extension, it can also be integrated
into SnuCL Cluster. For example, OpenCL applications can use both multicore
CPUs and NVIDIA GPUs in the compute nodes by integrating SnuCL CPU and
NVIDIA OpenCL SDK.

An MPI implementation (e.g., Open MPI) should be installed in both the host
node and the compute nodes. Additionally, you must have an account on all the
nodes. You must be able to ssh between the host node and the compute nodes
without using a password.

Installing SnuCL Cluster should be installed in all the nodes to run OpenCL
applications on the cluster. You can install SnuCL Cluster on the local hard drive
of each node, or on a shared filesystem such as NFS.

Download the SnuCL source code from http://snucl.snu.ac.kr. The pack-
age includes the SnuCL Cluster runtime. Put the gzipped tarball in your work
directory and untar it.

user@computer :~/$ tar zxvf snucl .1.3. tar.gz

Then, configure shell environment variables for SnuCL. Add the following con-
figuration in your shell startup scripts (e.g., .bashrc, .cshrc, .profile, etc.)

7

export SNUCLROOT=$HOME/snucl

export PATH=$PATH:$SNUCLROOT/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$SNUCLROOT/lib

Build SnuCL Cluster using a script named build cluster.sh.

user@computer :~/$ cd snucl/build

user@computer :~/ snucl/build$./ build_cluster.sh

As a result, the snucl/lib/libsnucl cluster.so file (i.e., the SnuCL Cluster
runtime) will be created.

An example run Test running an OpenCL application and check it runs cor-
rectly. First, you should edit the snucl/bin/snucl nodes file on the host node.
The file specifies the nodes’ hostname in the cluster. (See Chapter 3). The exam-
ple run is started on the target system by entering the following commands on the
host node:

user@computer :~/$ cd snucl/apps/sample

user@computer :~/ snucl/apps/sample$ make cluster

user@computer :~/ snucl/apps/sample$ snuclrun 1 ./ sample

[0] 100

[1] 110

[2] 120

[3] 130

[4] 140

[5] 150

[6] 160

[7] 170

[8] 180

[9] 190

[10] 200

[11] 210

[12] 220

[13] 230

[14] 240

[15] 250

[16] 260

[17] 270

[18] 280

[19] 290

[20] 300

8

[21] 310

[22] 320

[23] 330

[24] 340

[25] 350

[26] 360

[27] 370

[28] 380

[29] 390

[30] 400

[31] 410

user@computer :~/ snucl/apps/sample$

9

Chapter 3

Using SnuCL

3.1 Writing OpenCL applications using SnuCL

SnuCL follows the OpenCL 1.2 core specification. SnuCL provides a unified
OpenCL platform for compute devices of different vendors and in different nodes.
OpenCL applications written for a single system and a single OpenCL vendor
implementation can run on a heterogeneous cluster and on compute devices of
different vendors, without any modification.

If SnuCL and other OpenCL implementations are installed in the same system,
the clGetPlatformID function returns multiple platform IDs and OpenCL appli-
cations should choose the proper one. You may use the clGetPlatformInfo func-
tion to check the name (CL PLATFORM NAME) and vendor (CL PLATFORM VENDOR) of
platforms. The name and vendor of the SnuCL platforms are as follows:

Table 3.1: The name and vendor of the SnuCL platforms
Platform CL PLATFORM NAME CL PLATFORM VERSION

SnuCL CPU “SnuCL CPU” “Seoul National University”
SnuCL Single “SnuCL Single” “Seoul National University”

SnuCL Cluster “SnuCL Cluster” “Seoul National University”

3.2 Building OpenCL applications using SnuCL

To use SnuCL CPU or SnuCL Single, you only need to link your applications with
the OpenCL ICD driver and set the include path as follows:

user@computer :~$ gcc -o your_program your_source.c

-I$(SNUCLROOT)/inc -L$(SNUCLROOT)/lib -lOpenCL

10

To build an application for the cluster environment, you should use the compiler
for MPI programs (i.e., mpicc and mpic++) and link the application with the
SnuCL Cluster runtime as follows:

user@computer :~$ mpicc -o your_program your_source.c

-I$(SNUCLROOT)/inc -L$(SNUCLROOT)/lib -lsnucl_cluster

3.3 Running OpenCL applications using SnuCL

To run an OpenCL application on a single node, just execute the application. To
run an OpenCL application on a cluster, you can use a script named snuclrun as
follows:

snuclrun <number of compute nodes > <program > [<program

arguments >]

snuclrun uses a hostfile, snucl/bin/snucl nodes, which specifies the nodes’
hostname in the cluster. snucl nodes follows the hostfile format in the installed
MPI implementation. The first node becomes the host node and the other nodes
become the compute nodes.

hostnode slots =1 max_slots =1

computenode1 slots=1 max_slots =1

computenode2 slots=1 max_slots =1

..

11

Chapter 4

Understanding SnuCL

4.1 What SnuCL Cluster does with your OpenCL

applications

Main memory

Host node
CPU

core core

core core

core core

CPU
core core

core core

core core

PCI-E

CPU
core core

core core

core core

CPU
core core

core core

core core
mem

GPU

mem

GPU

mem

GPU

mem

GPU

Main memory

Compute node

Interconnection
network

Target cluster

Main memory

CPU

A system image running a single operating system instance

...... GPUCPU CPU CPU CPU GPU GPU GPU GPU GPU

SnuCL

Figure 1: Our approach.

to communicate between the nodes in the cluster. As a
result, the resulting application may not be executed in a
single node.
In this paper, we propose an OpenCL framework called

SnuCL and show that OpenCL can be a unified program-
ming model for heterogeneous CPU/GPU clusters. The tar-
get cluster architecture is shown in Figure 1. It consists of
a single host node and multiple compute nodes. The nodes
are connected by an interconnection network, such as Gi-
gabit Ethernet and InfiniBand switches. The host node ex-
ecutes the host program in an OpenCL application. Each
compute node consists of multiple multicore CPUs and mul-
tiple GPUs. A set of CPU cores or a single GPU becomes an
OpenCL compute device. A GPU has its own device mem-
ory, up to several gigabytes. Within a compute node, data is
transferred between the GPU device memory and the main
memory through a PCI-E bus.
SnuCL provides a system image running a single operating

system instance for heterogeneous CPU/GPU clusters to the
user as shown in Figure 1. It allows the application to utilize
compute devices in a compute node as if they were in the
host node. The user can launch a kernel to a compute device
or manipulate a memory object in a remote node using only
OpenCL API functions. This enables OpenCL applications
written for a single node to run on the cluster without any
modification. That is, with SnuCL, an OpenCL application
becomes portable not only between heterogeneous comput-
ing devices in a single node, but also between those in the
entire cluster environment.
The major contributions of this paper are the following:

• We show that the original OpenCL semantics naturally
fits to the heterogeneous cluster environment.

• We extend the original OpenCL semantics to the
cluster environment to make communication between
nodes faster and to achieve ease of programming.

• We describe the design and implementation of SnuCL
(the runtime and source-to-source translators) for the
heterogeneous CPU/GPU cluster.

• We develop an efficient memory management tech-
nique for the SnuCL runtime for the heterogeneous
CPU/GPU cluster.

• We show the effectiveness of SnuCL by implementing
the runtime and source-to-source translators. We ex-
perimentally demonstrate that SnuCL achieves high
performance, ease of programming, and scalability for
medium-scale heterogeneous clusters.

The rest of the paper is organized as follows. Section 2
describes the design and implementation of the SnuCL run-
time. Section 3, Section 4, and Section 5 describe memory
management techniques, collective communications exten-
sions to OpenCL, and code transformation techniques used
in SnuCL, respectively. Section 6 discusses and analyzes the
evaluation results of SnuCL. Section 7 surveys related work.
Finally, Section 8 concludes the paper.

2. THE SNUCL RUNTIME
In this section, we describe the design and implementa-

tion of the SnuCL runtime for the heterogeneous CPU/GPU
cluster.

2.1 The OpenCL Platform Model
The OpenCL platform model[9] consists of a host con-

nected to one or more compute devices. A compute device
is divided into one or more compute units (CUs) which are
further divided into one or more processing elements (PEs).
An OpenCL application consists of a host program and

kernels. A host program executes on the host and submits
commands to perform computations on a compute device
or to manipulate memory objects. There are three differ-
ent types of commands: kernel-execution, memory, and syn-
chronization. A kernel is a function and written in OpenCL
C. It executes on a compute device. It is submitted to a
command-queue in the form of a kernel-execution command
by the host program. A command-queue is created and at-
tached to a specific compute device by the host program.
A compute device may have one or more command-queues.
Commands in a command-queue are issued in-order or out-
of-order depending on the queue type.
When a kernel-execution command is enqueued, an ab-

stract index space is defined. The index space called
NDRange is an N-dimensional space, where N is equal to
1, 2, or 3. An NDRange is defined by an N-tuple of integers
and specifies the extent of the index space (the dimension
and the size). An instance of the kernel, called a work-item,
executes for each point in this index space. A work-item is
uniquely identified by a global ID (N-tuples) defined by its
point in the index space. Each work-item executes the same
code but the specific pathway and accessed data can vary.
One or more work-items compose a work-group, which

provides more coarse-grained decomposition of the index
space. Each work-group has a unique work-group ID in the
work-group index space and assigns a unique local ID to
each work-item. Thus a work-item is identified by its global
ID or by a combination of its local ID and work-group ID.
The work-items in a given work-group execute concurrently
on the PEs in a single CU.

2.2 Mapping Components
SnuCL defines a mapping between the OpenCL platform

components and the target architecture components. A

342

Figure 4.1: Our Approach.

SnuCL provides a system image running a single operating system instance for
heterogeneous CPU/GPU cluster to the user. It allows the application to utilize

12

compute devices in a compute node as if they were in the host node. The user can
launch a kernel to a compute device or manipulate a memory object in a remote
node using only OpenCL API functions. This enables OpenCL applications writ-
ten for a single node to run on the cluster without any modification. That is, with
SnuCL, an OpenCL application becomes portable not only between heterogeneous
computing devices in a single node, but also between those in the entire cluster
environment.

...

GPU device

...

Interconnection
network

Command queue
Completion queue

GPU device

Command scheduler

Issue

Command handler

Per device

...
...

...

Host thread

Completion

Ready queue

... ...

Device thread CU thread

Host
node

Compute
node

Issue list

Enqueue

...
CPU device

...
CPU device

Figure 2: The organization of the SnuCL runtime.

CPU core in the host node becomes the OpenCL host pro-
cessor. A GPU or a set of CPU cores in a compute node
becomes a compute device. Thus, a compute node may have
multiple GPU devices and multiple CPU devices. The re-
maining CPU cores in the host node other than the host
core can be configured as a compute device.

Since OpenCL has a strong CUDA heritage[12], the map-
ping between the components of an OpenCL compute device
to those in a GPU is straightforward. For a compute device
composed of multiple CPU cores, SnuCL maps all of the
memory components in the compute device to disjoint re-
gions in the main memory of the compute node where the
device resides. Each CPU core becomes a CU, and the core
emulates the PEs in the CU using the work-item coalescing
technique[15].

2.3 Organization of the SnuCL Runtime
Figure 2 shows the organization of the SnuCL runtime.

It consists of two different parts for the host node and a
compute node.

The runtime for the host node runs two threads: host
thread and command scheduler. When a user launches an
OpenCL application in the host node, the host thread in
the host node executes the host program in the application.
The host thread and command scheduler share the OpenCL
command-queues. A compute device may have one or more
command-queues as shown in Figure 2. The host thread en-
queues commands to the command-queues (� in Figure 2).
The command scheduler schedules the enqueued commands
across compute devices in the cluster one by one (�).

When the command scheduler in the host node dequeues a
command from a command-queue, the command scheduler
issues the command by sending a command message (�) to
the target compute node that contains the target compute
device associated with the command-queue. A command
message contains the information required to execute the
original command. To identify each OpenCL object, the
runtime assigns a unique ID to each OpenCL object, such
as contexts, compute devices, buffers (memory objects), pro-
grams, kernels, events, etc. The command message contains
these IDs.

After the command scheduler sends the command mes-
sage to the target compute node, it calls a non-blocking
receive communication API function to wait for the comple-
tion message from the target node. The command scheduler
encapsulates the receive request in the command event ob-
ject and adds the event object in the issue list. The issue list

contains event objects associated with the commands that
have been issued but have not completed yet.

The runtime for a compute node runs a command handler
thread. The command handler receives command messages
from the host node and executes them across compute de-
vices in the compute node. It creates a command object
and an associated event object from the message. After
extracting the target device information from the message,
the command handler enqueues the command object to the
ready-queue of the target device (�). Each compute device
has a single ready-queue. The ready-queue contains com-
mands that are issued but not launched to the associated
compute device yet.

The runtime for a compute node runs a device thread for
each compute device in the node. If a CPU device exists
in the compute node, each core in the CPU device runs a
CU thread to emulate PEs. The device thread dequeues
a command from its ready-queue and launches the kernel
to the associated compute device when the command is a
kernel-execution command and the compute device is idle
(�). If it is a memory command, the device thread executes
the command directly.

When the compute device completes executing the com-
mand, the device thread updates the status of the associ-
ated event to completed, and then inserts the event to the
completion queue in the compute node (�). The command
handler in each compute node repeats handling commands
and checking the completion queue in turn. When the com-
pletion queue is not empty, the command handler dequeues
the event from the completion queue and sends a completion
message to the host node (�).

The command scheduler in the host node repeats schedul-
ing commands and checking the event objects in the issue
list in turn until the OpenCL application terminates. If the
receive request encapsulated in an event object in the issue
list completes, the command scheduler removes the event
from the issue list and updates the status of the dequeued
event from issued to completed ().

The command scheduler in the host node and command
handlers in the compute nodes are in charge of communica-
tion between different nodes. This communication mecha-
nism is implemented with a lower-level communication API,
such as MPI. To implement the runtime for each compute
node, an existing CUDA or OpenCL runtime for a single
node can be used.

2.4 Processing Kernel-execution Commands
When a device thread dequeues a kernel-execution com-

mand from its ready-queue, it launches the kernel to the

343

Figure 4.2: The organization of the SnuCL runtime.

This figure shows the organization of the SnuCL runtime. It consists of two
different parts for the host node and a compute node.

The runtime for the host node runs two threads: host thread and command
scheduler. When a user launches an OpenCL application in the host node, the
host thread in the host node executes the host program in the application. The
host thread and command scheduler share the OpenCL command-queues. A com-
pute device may have one or more command-queues. The host thread enqueues
commands to the command-queues (1© in the figure). The command scheduler
schedules the enqueued commands across compute devices in the cluster one by
one (2©).

When the command scheduler in the host node dequeues a command from a
command-queue, the command scheduler issues the command by sending a com-
mand message (3©) to the target compute node that contains the target compute
device associated with the command-queue. A command message contains the
information required to execute the original command. To identify each OpenCL
object, the runtime assigns a unique ID to each OpenCL object, such as contexts,
compute devices, buffers (memory objects), programs, kernels, events, etc. The
command message contains these IDs.

After the command scheduler sends the command message to the target com-
pute node, it calls a non-blocking receive communication API function to wait the
completion message from the target node. The command scheduler encapsulates
the receive request in the command event object and adds the event object in the

13

issue list. The issue list contains event objects associated with the commands that
have been issued but have not completed yet.

The runtime for a compute node runs a command handler thread. The com-
mand handler receives command messages from the host node and executes them
across compute devices in the compute node. It creates a command object and an
associated event object from the message. After extracting the target device infor-
mation from the message, the command handler enqueues the command object to
the ready-queue of the target device (4©). Each compute device has a single ready-
queue. The ready-queue contains commands that are issued but not launched to
the associated compute device yet.

The runtime for a compute node runs a device thread for each compute device
in the node. The device thread dequeues a command from its ready-queue and
executes the command (5©). When the compute device completes executing the
command, the device thread updates the status of the associated event to com-
pleted, and then inserts the event to the completion queue in the compute node
(6©). The command handler in each compute node repeats handling commands
and checking the completion queue in turn. When the completion queue is not
empty, the command handler dequeues the event from the completion queue and
sends a completion message to the host node (7©).

The command scheduler in the host node repeats scheduling commands and
checking the event objects in the issue list in turn until the OpenCL application
terminates. If the receive request encapsulated in an event object in the issue
list completes, the command scheduler removes the event from the issue list and
updates the status of the dequeued event from issued to completed (8©).

14

Chapter 5

Known Issues

The following is a list of known issues in the current SnuCL implementation.

• OpenCL API functions added in OpenCL 1.2 (clEnqueueReadBufferRect,
clEnqueueWriteBufferRect, clEnqueueCopyBufferRect, clCompileProgram,
and clLinkProgram) are not supported for NVIDIA GPUs because NVIDIA
OpenCL SDK only supports OpenCL 1.1.

• Compute devices can’t be partitioned into sub-devices.

• If a buffer and its sub-buffer are written by different devices, the memory
consistency between the buffer and the sub-buffer is not guaranteed.

• The CL MEM USE HOST PTR and CL MEM ALLOC HOST PTR flags don’t work for
SnuCL Single and SnuCL Cluster.

15

