SnuCL User Manual

Center for Manycore Programming
Department of Computer Science and Engineering
Seoul National University, Seoul 151-744, Korea
http://aces.snu.ac.kr

Release 1.3.1 September 2013

Contents

1 Introduction

2 Installation

2.1 Installing SnuCL CPU 0000000 L.
2.2 Installing SnuCL Single
2.3 Installing SnuCL Cluster

3 Using SnuCL

3.1 Writing OpenCL applications using SnuCL
3.2 Building OpenCL applications using SnuCL
3.3 Running OpenCL applications using SnuCL

4 Understanding SnuCL
4.1 What SnuCL Cluster does with your OpenCL applications

5 Known Issues

10
10
10
11

12
12

15

Chapter 1

Introduction

SnuCL is an OpenCL framework and freely available, open-source software devel-
oped at Seoul National University.

SnuCL naturally extends the original OpenCL semantics to the heterogeneous
cluster environment. The target cluster consists of a single host node and multi-
ple compute nodes. They are connected by an interconnection network, such as
Gigabit and InfiniBand switches. The host node contains multiple CPU cores and
each compute node consists of multiple CPU cores and multiple GPUs. For such
clusters, SnuCL provides an illusion of a single heterogeneous system for the pro-
grammer. A set of CPU cores, a GPU, or an Intel Xeon Phi coprocessor becomes
an OpenCL compute device. SnuCL allows the application to utilize compute
devices in a compute node as if they were in the host node.

In addition, SnuCL integrates multiple OpenCL platforms from different vendor
implementations into a single platform. It enables OpenCL applications to share
objects (buffers, events, etc.) between compute devices of different vendors.

As aresult, SnuCL achieves both high performance and ease of programming in
both a single system (i.e., a single operating system instance) and a heterogeneous
cluster system (i.e., a cluster with many operating system instances).

SnuCL provides three OpenCL platforms:

e SnuCL CPU provides a set of CPU cores as an OpenCL compute device.

e SnuCL Single is an OpenCL platform that integrates all ICD compatible
OpenCL implementations installed in a single system.

e SnuCL Cluster is an OpenCL platform for a heterogeneous cluster. It in-
tegrates all ICD compatible OpenCL implementations in the compute nodes
and provides an illusion of a single heterogeneous system for the programmer.

Chapter 2

Installation

SnuCL platforms can be installed separately. To install SnuCL CPU, see Sec-
tion 2.1. To install SnuCL Single, see Section 2.2. To install SnuCL Cluster, see
Section 2.3.

2.1 Installing SnuCL CPU

Prerequisite The OpenCL ICD loader (i.e., 1ibOpenCL. so) should be installed
in the system. If there are other ICD compatible OpenCL implementations in
the system, they may provide the OpenCL ICD loader. Or you can download the
source code of the official OpenCL 1.2 ICD loader from http://www.khronos.
org/registry/cl/.

Installing Download the SnuCL source code from http://snucl.snu.ac.kr.
The package includes the OpenCL ICD driver, the SnuCL CPU runtime, and the
source-to-source translator for a CPU device. Then, untar it and configure shell
environment variables for SnuCL.

userQcomputer:~/$ tar zxvf snucl.1.3.tar.gz
user@computer:~/$ export SNUCLROOT=$HOME/snucl
user@computer:~/$ export PATH=$PATH: $SNUCLROOT/bin
user@computer:~/$ export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH: $SNUCLROOT/1lib

Build SnuCL CPU using a script named build_cpu.sh. It may require a long
time to build the LLVM compiler infrastructure and all OpenCL built-in functions.

user@computer:~/$ cd snucl/build

user@computer :~/snucl/build$./build_cpu.sh

As a result, the following files will be created:

snucl/lib/1libsnucl _cpu.so: the SnuCL CPU runtime

e snucl/bin/clang, snucl/bin/snuclc-merger, snucl/1ib/1ibSnuCLTranslator.a,

snucl/1ib/1ibSnuCLTranslator.so, snucl/lib/libsnucl-builtins-1nx7??.a:
components of the source-to-source translator

Then, register SnuCL CPU to the OpenCL ICD loader. This may require the
root permission.

user@computer:~/$ echo libsnucl_cpu.so >
/etc/0OpenCL/vendors/snucl_cpu.icd

An example run Test running an OpenCL application and check it runs cor-
rectly. The example run is started on the target system by entering the following
commands:

user@computer:~/$ cd snucl/apps/sample
user@computer:~/snucl/apps/sample$ make cpu
user@computer:~/snucl/apps/sample$./sample

L

L I s I s IO e SN s I s A s I e |

L

0]
1]
2]
3]
4]
5]
6]
7]
8]
9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

[19] 290
[20] 300
[21] 310
[22] 320
[23] 330
[24] 340
[25] 350
[26] 360
[27] 370
[28] 380
[29] 390
[30] 400
[31] 410
user@computer :~/snucl/apps/sample$

2.2 Installing SnuCL Single

Prerequisite There should be one or more ICD compatible OpenCL implemen-
tations installed in the system, e.g., Intel SDK for OpenCL Applications, AMD
Accelerated Parallel Processing SDK, and NVIDIA OpenCL SDK. They serves
the OpenCL programming environment for each compute device.

Since SnuCL CPU follows the OpenCL ICD extension, it can also be inte-
grated into SnuCL Single. For example, OpenCL applications can use both multi-
core CPUs and NVIDIA GPUs at the same time by integrating SnuCL CPU and
NVIDIA OpenCL SDK.

In addition, the OpenCL ICD loader (i.e., 1ibOpenCL.so0) should be installed
in the system. The ICD compatible OpenCL implementations may provide the
OpenCL ICD loader. Or you can download the source code of the official OpenCL
1.2 ICD loader from http://www.khronos.org/registry/cl/.

Installing Download the SnuCL source code from http://snucl.snu.ac.kr.
The package includes the OpenCL ICD driver and the SnuCL Single runtime.
Then, untar it and configure shell environment variables for SnuCL.

user@computer:~/$ tar zxvf snucl.1.3.tar.gz
user@computer:~/$ export SNUCLROOT=$HOME/snucl
user@computer:~/$ export PATH=$PATH: $SNUCLROOT/bin
user@computer:~/$ export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH: $SNUCLROOT/1lib

Build SnuCL Single using a script named build_single.sh.

user@computer:~/$ cd snucl/build
user@computer :”/snucl/build$./build_single.sh

As a result, the snucl/1ib/1libsnucl _single.so file will be created.
Then, register SnuCL Single to the OpenCL ICD loader. This may require the
root permission.

user@computer:~/$ echo libsnucl_single.so >
/etc/0OpenCL/vendors/snucl_single.icd

An example run Test running an OpenCL application and check it runs cor-
rectly. The example run is started on the target system by entering the following
commands:

user@computer:~/$ cd snucl/apps/sample
user@computer :~/snucl/apps/sample$ make single
user@computer :~/snucl/apps/sample$./sample
[0] 100

1] 110

2] 120

3] 130

4] 140

5] 150

6] 160

7] 170

8] 180

[91 190

[10] 200

[11] 210

[12] 220

[13] 230

[14] 240

[15] 250

[16] 260

[17] 270

[18] 280

[19] 290

[20] 300

[21] 310

L I s I s IO e SN s I s A s I e |

[22] 320
[23] 330
[24] 340
[25] 350
[26] 360
[27] 370
[28] 380
[29] 390
[30] 400
[31] 410
user@computer :~/snucl/apps/sample$

2.3 Installing SnuCL Cluster

Prerequisite There should be one or more ICD compatible OpenCL implemen-
tations installed in the compute nodes, e.g., Intel SDK for OpenCL Applications,
AMD Accelerated Parallel Processing SDK, and NVIDIA OpenCL SDK. They
serves the OpenCL programming environment for each compute device.

Since SnuCL CPU follows the OpenCL ICD extension, it can also be integrated
into SnuCL Cluster. For example, OpenCL applications can use both multicore
CPUs and NVIDIA GPUs in the compute nodes by integrating SnuCL CPU and
NVIDIA OpenCL SDK.

An MPI implementation (e.g., Open MPI) should be installed in both the host
node and the compute nodes. Additionally, you must have an account on all the
nodes. You must be able to ssh between the host node and the compute nodes
without using a password.

Installing SnuCL Cluster should be installed in all the nodes to run OpenCL
applications on the cluster. You can install SnuCL Cluster on the local hard drive
of each node, or on a shared filesystem such as NFS.

Download the SnuCL source code from http://snucl.snu.ac.kr. The pack-
age includes the SnuCL Cluster runtime. Put the gzipped tarball in your work
directory and untar it.

user@computer:~/$ tar zxvf snucl.l1.3.tar.gz

Then, configure shell environment variables for SnuCL. Add the following con-
figuration in your shell startup scripts (e.g., .bashrc, .cshrc, .profile, etc.)

export SNUCLROOT=$HOME/snucl
export PATH=$PATH: $SNUCLROOT/bin
export LD_LIBRARY PATH=$LD_LIBRARY_PATH:$SNUCLROOT/1lib

Build SnuCL Cluster using a script named build _cluster. sh.

user@computer:~/$ cd snucl/build
user@computer :~/snucl/build$./build_cluster.sh

As a result, the snucl/1ib/libsnucl_cluster.so file (i.e., the SnuCL Cluster
runtime) will be created.

An example run Test running an OpenCL application and check it runs cor-
rectly. First, you should edit the snucl/bin/snucl nodes file on the host node.
The file specifies the nodes’ hostname in the cluster. (See Chapter 3). The exam-
ple run is started on the target system by entering the following commands on the
host node:

user@computer:~/$ cd snucl/apps/sample
user@computer :~/snucl/apps/sample$ make cluster
user@computer :~/snucl/apps/sample$ snuclrun 1 ./sample
[01 100

1] 110

2] 120

3] 130

41 140

5] 150

6] 160

71 170

8] 180

[91 190

[10] 200

[(11] 210

[12] 220

[13] 230

[14] 240

[15] 250

[16] 260

[17] 270

[18] 280

[19] 290

[20] 300

L I e IO v AN e SN e B s A s B |

Chapter 3

Using SnuCL

3.1 Writing OpenCL applications using SnuCL

SnuCL follows the OpenCL 1.2 core specification. SnuCL provides a unified
OpenCL platform for compute devices of different vendors and in different nodes.
OpenCL applications written for a single system and a single OpenCL vendor
implementation can run on a heterogeneous cluster and on compute devices of
different vendors, without any modification.

If SnuCL and other OpenCL implementations are installed in the same system,
the c1GetPlatformID function returns multiple platform IDs and OpenCL appli-
cations should choose the proper one. You may use the clGetPlatformInfo func-
tion to check the name (CL_PLATFORM_NAME) and vendor (CL_PLATFORM_VENDOR) of
platforms. The name and vendor of the SnuCL platforms are as follows:

Table 3.1: The name and vendor of the SnuCL platforms

| Platform | CL_PLATFORM_NAME | CL_PLATFORM_VERSION
SnuCL CPU “SnuCL CPU” “Seoul National University”
SnuCL Single | “SnuCL Single” | “Seoul National University”
SnuCL Cluster | “SnuCL Cluster” | “Seoul National University”

3.2 Building OpenCL applications using SnuCL

To use SnuCL CPU or SnuCL Single, you only need to link your applications with
the OpenCL ICD driver and set the include path as follows:

user@computer:~“$ gcc -o your_program your_source.c
-I$ (SNUCLROOT)/inc -L$ (SNUCLROOT)/1lib -10penCL

10

To build an application for the cluster environment, you should use the compiler
for MPI programs (i.e., mpicc and mpic++) and link the application with the
SnuCL Cluster runtime as follows:

user@computer:~$ mpicc -o your_program your_source.c
-I$ (SNUCLROOT)/inc -L$ (SNUCLROOT)/1lib -1lsnucl_cluster

3.3 Running OpenCL applications using SnuCL

To run an OpenCL application on a single node, just execute the application. To
run an OpenCL application on a cluster, you can use a script named snuclrun as
follows:

snuclrun <number of compute nodes> <program> [<program
arguments >]

snuclrun uses a hostfile, snucl/bin/snucl_nodes, which specifies the nodes’
hostname in the cluster. snucl nodes follows the hostfile format in the installed
MPI implementation. The first node becomes the host node and the other nodes
become the compute nodes.

hostnode slots=1 max_slots=1
computenodel slots=1 max_slots=1
computenode2 slots=1 max_slots=1

11

Chapter 4

Understanding SnuCL

4.1 What SnuCL Cluster does with your OpenCL
applications

2 I e e
S| | e R = =) e e s R
| Main memory I

A system image running a single operating system instance

mum_ [

Target cluster

Host node
CPU CPU
core J|core core J|core
core J|core core J|Lcore .
=— Interconnection
core J|core core J|core
network

| Main memory |

ettt ettt bttt Tt

CPU CPU
core J[core core J| core
core | core core J| core
core J [core core J| core

N .

Figure 4.1: Our Approach.

SnuCL provides a system image running a single operating system instance for
heterogeneous CPU/GPU cluster to the user. It allows the application to utilize

12

compute devices in a compute node as if they were in the host node. The user can
launch a kernel to a compute device or manipulate a memory object in a remote
node using only OpenCL API functions. This enables OpenCL applications writ-
ten for a single node to run on the cluster without any modification. That is, with
SnuCL, an OpenCL application becomes portable not only between heterogeneous
computing devices in a single node, but also between those in the entire cluster
environment.

..

Completion queue
I P q

(8) LT 11— r== S
' e - PU devi
I o Gy devee
. oo -
' \ ez GPU device .
. Issue list = '
" Host 1 rCETD- ssue s : : Compute :
' node | e N - i node
' Enqueue Sl 9 @ H CPU device
- N ! - - -
(o] nE-n
[ety
” ‘I‘:'I‘:] Interconnection E CPU device
RSN P\ network - B0 0
Host thread Command scheduler Command handler Ready queuekDevice thread — CU thread

Figure 4.2: The organization of the SnuCL runtime.

This figure shows the organization of the SnuCL runtime. It consists of two
different parts for the host node and a compute node.

The runtime for the host node runs two threads: host thread and command
scheduler. When a user launches an OpenCL application in the host node, the
host thread in the host node executes the host program in the application. The
host thread and command scheduler share the OpenCL command-queues. A com-
pute device may have one or more command-queues. The host thread enqueues
commands to the command-queues (D in the figure). The command scheduler
schedules the enqueued commands across compute devices in the cluster one by
one ().

When the command scheduler in the host node dequeues a command from a
command-queue, the command scheduler issues the command by sending a com-
mand message (3)) to the target compute node that contains the target compute
device associated with the command-queue. A command message contains the
information required to execute the original command. To identify each OpenCL
object, the runtime assigns a unique ID to each OpenCL object, such as contexts,
compute devices, buffers (memory objects), programs, kernels, events, etc. The
command message contains these IDs.

After the command scheduler sends the command message to the target com-
pute node, it calls a non-blocking receive communication API function to wait the
completion message from the target node. The command scheduler encapsulates
the receive request in the command event object and adds the event object in the

13

1ssue list. The issue list contains event objects associated with the commands that
have been issued but have not completed yet.

The runtime for a compute node runs a command handler thread. The com-
mand handler receives command messages from the host node and executes them
across compute devices in the compute node. It creates a command object and an
associated event object from the message. After extracting the target device infor-
mation from the message, the command handler enqueues the command object to
the ready-queue of the target device (@). Each compute device has a single ready-
queue. The ready-queue contains commands that are issued but not launched to
the associated compute device yet.

The runtime for a compute node runs a device thread for each compute device
in the node. The device thread dequeues a command from its ready-queue and
executes the command ((®)). When the compute device completes executing the
command, the device thread updates the status of the associated event to com-
pleted, and then inserts the event to the completion queue in the compute node
(®). The command handler in each compute node repeats handling commands
and checking the completion queue in turn. When the completion queue is not
empty, the command handler dequeues the event from the completion queue and
sends a completion message to the host node (D).

The command scheduler in the host node repeats scheduling commands and
checking the event objects in the issue list in turn until the OpenCL application
terminates. If the receive request encapsulated in an event object in the issue
list completes, the command scheduler removes the event from the issue list and
updates the status of the dequeued event from issued to completed (®).

14

Chapter 5

Known Issues

The following is a list of known issues in the current SnuCL implementation.

e OpenCL API functions added in OpenCL 1.2 (c1EnqueueReadBufferRect,
clEnqueueWriteBufferRect, c1EnqueueCopyBufferRect, clCompileProgram,
and clLinkProgram) are not supported for NVIDIA GPUs because NVIDIA
OpenCL SDK only supports OpenCL 1.1.

e Compute devices can’t be partitioned into sub-devices.

e If a buffer and its sub-buffer are written by different devices, the memory
consistency between the buffer and the sub-buffer is not guaranteed.

e The CL_MEM USE HOST_PTR and CL_MEM_ALLOC_HOST_PTR flags don’t work for
SnuCL Single and SnuCL Cluster.

15

