
1

SnuCL User Manual

Release 1.2 Beta Version June 2012

Center for Manycore Programming

School of Computer Science and Engineering

Seoul National University, Seoul 151-744, Korea

http://aces.snu.ac.kr

2

1. Introduction

SnuCL is an OpenCL framework and freely available, open-source software developed at Seoul

National University. It naturally extends the original OpenCL semantics to the heterogeneous

cluster environment. The target cluster consists of a single host node and multiple compute nodes.

They are connected by an interconnection network, such as Gigabit and InfiniBand switches. The

host node contains multiple CPU cores and each compute node consists of multiple CPU cores

and multiple GPUs. For such clusters, SnuCL provides a system image running a single

operating system instance to the user. A GPU or a set of CPU cores becomes an OpenCL

compute device. SnuCL allows the application to utilize compute devices in a compute node as if

they were in the host node. SnuCL achieves both high performance and ease of programming in

a heterogeneous cluster environment.

3

2. Installation

2.1. Supported Platforms

SnuCL builds on 32-bit, 64-bit flavors of Linux. SnuCL runs on a single heterogeneous

CPU/GPU system (i.e. a single node), or a heterogeneous CPU/GPU clusters consisting of a

single host node and multiple compute nodes. The following processors are supported by SnuCL

and become SnuCL compute devices.

 x86 CPUs

 ARM CPUs

 PowerPC CPUs

 NVIDIA GPUs

To install SnuCL on a single node, see section 2.2. To install SnuCL on a cluster, see section 2.3.

2.2. Installing SnuCL on a single node

Prerequisite. To install SnuCL on a single node, you must install the following:

 The vendor-provided driver and OpenCL runtime if you want to use a GPU device (e.g.

CUDA Toolkit).

Installing. Download the SnuCL framework source code from http://snucl.snu.ac.kr. The

package includes the SnuCL runtime, source-to-source translators, and all libraries required by

the framework.

Put the gzipped tarball in your work directory. Then, untar it and configure shell environment

variables for SnuCL.

user@computer:~/$ tar zxvf snucl.1.2.tar.gz

user@computer:~/$ export SNUCLROOT=$HOME/snucl

user@computer:~/$ export PATH=$PATH:$SNUCLROOT/bin

http://snucl.snu.ac.kr/

4

user@computer:~/$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$SNUCLROOT/lib

Build the SnuCL distribution using a script named install.sh. You should specify devices in the

target system as follows:

 To use a CPU device (multi-core CPUs):

user@computer:~/$ cd snucl/build

user@computer:~/snucl/build$./install.sh X86

 To use both a CPU device and a GPU device:

user@computer:~/$ cd snucl/build

user@computer:~/snucl/build$./install.sh X86 LEGACY

An example run. You should now test running a SnuCL application and check it runs correctly.

The sample example is started on the target system by entering the following commands:

user@computer:~/$ cd snucl/apps/sample

user@computer:~/ snucl /apps/sample$ make

user@computer:~/ snucl /apps/sample$./bin/sample

[0] 100

[1] 110

[2] 120

[3] 130

[4] 140

[5] 150

[6] 160

[7] 170

[8] 180

[9] 190

[10] 200

[11] 210

[12] 220

[13] 230

[14] 240

[15] 250

[16] 260

[17] 270

[18] 280

[19] 290

5

[20] 300

[21] 310

[22] 320

[23] 330

[24] 340

[25] 350

[26] 360

[27] 370

[28] 380

[29] 390

[30] 400

[31] 410

user@computer:~/snucl/apps/sample$

2.3. Installing SnuCL on a cluster

Prerequisite. To install SnuCL for a cluster, you must install the following in both the host node

and the compute nodes:

 An MPI implementation (e.g., Open MPI).

 The vendor-provided driver and OpenCL runtime if you want to use GPU devices (e.g.

CUDA Toolkit).

Additionally, you must have an account on all the nodes. You must be able to ssh between the

host node and the compute nodes without using a password.

Installing. You must install SnuCL in all the nodes to run OpenCL applications on the cluster.

Download the SnuCL framework source code from http://snucl.snu.ac.kr. The package includes

the SnuCL runtime, source-to-source translators, and all libraries required by the framework.

Put the gzipped tarball in your work directory and untar it.

user@computer:~/$ tar zxvf snucl.1.2.tar.gz

Then, configure shell environment variables for SnuCL. Add the following configuration in your

shell startup scripts (e.g., .bashrc, .cshrc, .profile, etc.)

export SNUCLROOT=$HOME/snucl

http://snucl.snu.ac.kr/

6

export PATH=$PATH:$SNUCLROOT/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$SNUCLROOT/lib

Build the SnuCL distribution using a script named install.sh. You should specify devices in the

compute nodes as follows:

 To use CPU devices (multi-core CPUs) in the compute nodes:

user@computer:~/$ cd snucl/build

user@computer:~/snucl/build$./install.sh X86 CLUSTER

 To use both CPU devices and GPU devices in the compute nodes:

user@computer:~/$ cd snucl/build

user@computer:~/snucl/build$./install.sh X86 LEGACY CLUSTER

An example run. You should now test running a SnuCL application and check it runs correctly.

First, you should edit snucl_nodes in the directory $SNUCLROOT/bin. The file specifies the

nodes’ hostnames in the cluster. (See section 3.2)

The sample example is started on the target cluster by entering the following commands:

user@computer:~/$ cd snucl/apps/sample

user@computer:~/ snucl /apps/sample$ make cluster=1

user@computer:~/ snucl /apps/sample$ snuclrun 1 ./bin/sample

[0] 100

[1] 110

[2] 120

[3] 130

[4] 140

[5] 150

[6] 160

[7] 170

[8] 180

[9] 190

[10] 200

[11] 210

[12] 220

[13] 230

[14] 240

[15] 250

7

[16] 260

[17] 270

[18] 280

[19] 290

[20] 300

[21] 310

[22] 320

[23] 330

[24] 340

[25] 350

[26] 360

[27] 370

[28] 380

[29] 390

[30] 400

[31] 410

user@computer:~/snucl/apps/sample$

8

3. Using SnuCL

3.1. Building OpenCL applications using SnuCL

With SnuCL, the user can launch a kernel to a compute device or manipulate a memory object in

a remote node using only OpenCL API functions. This enables OpenCL applications written for a

single heterogeneous system to run on the cluster without any modification.

You only need to link your applications with SnuCL libraries to run your OpenCL applications in

the cluster environment. You may use the Makefile template in the directory

$SNUCLROOT/apps/sample. Set the variable cluster to 0 if SnuCL is installed on a single node

or to 1 if SnuCL is installed on a cluster.

EXECUTABLE := <program name>

CCFILES := <source files>

cluster := <0 or 1>

include $(SNUCLROOT)/common.mk

3.2. Running OpenCL applications using SnuCL

To run an OpenCL application on a single node, just execute the application. To run an OpenCL

application on a cluster, you can use a script named snuclrun as follows:

snuclrun <# of compute nodes> <program> [<program arguments>]

snuclrun uses a hostfile, $SNUCLROOT/bin/snucl_nodes, which specifies the nodes’ hostnames

in the cluster. snucl_nodes follows the hostfile format in the installed MPI implementation.

hostnode slots=1 max_slots=1

computenode1 slots=1 max_slots=1

computenode2 slots=1 max_slots=1

..

9

4. Understanding SnuCL

4.1. What SnuCL does with your OpenCL applications

SnuCL provides a system image running a single operating system instance for heterogeneous

CPU/GPU clusters to the user. It allows the application to utilize compute devices in a compute

node as if they were in the host node. The user can launch a kernel to a compute device or

manipulate a memory object in a remote node using only OpenCL API functions. This enables

OpenCL applications written for a single node to run on the cluster without any modification.

That is, with SnuCL, an OpenCL application becomes portable not only between heterogeneous

computing devices in a single node, but also between those in the entire cluster environment.

10

This figure shows the organization of the SnuCL runtime. It consists of two different parts for the

host node and a compute node.

The runtime for the host node runs two threads: host thread and command scheduler. When a

user launches an OpenCL application in the host node, the host thread in the host node executes

the host program in the application. The host thread and command scheduler share the OpenCL

command-queues. A compute device may have one or more command-queues. The host thread

enqueues commands to the command-queues (① in the figure). The command scheduler

schedules the enqueued commands across compute devices in the cluster one by one (②).

When the command scheduler in the host node dequeues a command from a command-queue,

the command scheduler issues the command by sending a command message (③) to the target

compute node that contains the target compute device associated with the command-queue. A

command message contains the information required to execute the original command. To

identify each OpenCL object, the runtime assigns a unique ID to each OpenCL object, such as

contexts, compute devices, buffers (memory objects), programs, kernels, events, etc. The

command message contains these IDs.

After the command scheduler sends the command message to the target compute node, it calls a

non-blocking receive communication API function to wait for the completion message from the

target node. The command scheduler encapsulates the receive request in the command event

object and adds the event object in the issue list. The issue list contains event objects associated

with the commands that have been issued but have not completed yet.

The runtime for a compute node runs a command handler thread. The command handler receives

command messages from the host node and executes them across compute devices in the

compute node. It creates a command object and an associated event object from the message.

After extracting the target device information from the message, the command handler enqueues

the command object to the ready-queue of the target device (④). Each compute device has a

11

single ready-queue. The ready-queue contains commands that are issued but not launched to the

associated compute device yet.

The runtime for a compute node runs a device thread for each compute device in the node. If a

CPU device exists in the compute node, each core in the CPU device runs a CU thread to

emulate PEs. The device thread dequeues a command from its ready-queue and launches the

kernel to the associated compute device when the command is a kernel-execution command and

the compute device is idle (⑤). If it is a memory command, the device thread executes the

command directly.

When the compute device completes executing the command, the device thread updates the

status of the associated event to completed, and then inserts the event to the completion queue in

the compute node (⑥). The command handler in each compute node repeats handling commands

and checking the completion queue in turn. When the completion queue is not empty, the

command handler dequeues the event from the completion queue and sends a completion

message to the host node (⑦).

The command scheduler in the host node repeats scheduling commands and checking the event

objects in the issue list in turn until the OpenCL application terminates. If the receive request

encapsulated in an event object in the issue list completes, the command scheduler removes the

event from the issue list and updates the status of the dequeued event from issued to completed

(⑧).

12

5. Functions Supported

SnuCL follows the OpenCL core specification version 1.2 for CPU devices and 1.1 for GPU

devices. This section summarizes the supported functions of the current SnuCL implementation.

5.1. Tested Platforms

SnuCL has been tested on two cluster systems (Cluster A and Cluster B). Cluster A is used to test

CPU devices, and Cluster B is used to test GPU devices. Cluster A consists of the following nodes:

 Host node

 AMD® Opteron® Processor 4184

 Red Hat Enterprise Linux Server 6.1

 gcc 4.4.5

 Open MPI 1.4.3

 Compute node

 AMD® Opteron Processor 6172

 Red Hat Enterprise Linux Server 6.1

 gcc 4.4.5

 Open MPI 1.4.3

Cluster B consists of the following nodes:

 Host node

 Intel® Xeon® Processor X5680

 Red Hat Enterprise Linux Server 5.5

 gcc 4.1.2

13

 Open MPI 1.4.1

 CUDA Toolkit 4.2

 Compute node

 Intel® Xeon® Processor X5660

 NVIDIA GeForce GTX 480

 Red Hat Enterprise Linux Server 5.5

 gcc 4.1.2

 Open MPI 1.4.1

 CUDA Toolkit 4.2

5.2. API Functions Supported

The following table shows all API functions in the OpenCL specification version 1.1 and version

1.2, and whether they are supported in the current SnuCL implementation. API functions marked

with “(1.1)” or “(1.2)” are only in OpenCL 1.1 or OpenCL 1.2, respectively. All other functions

are included in both OpenCL 1.1 and OpenCL 1.2. An “O” indicates that a function is fully

supported. A “△” indicates that a function is partially supported. An empty cell indicates that a

function is not supported yet.

API function
Single node Cluster

CPU GPU CPU GPU

Querying Platform Info

clGetPlatformIDs O O O O

clGetPlatformInfo O O O O

Querying Devices

clGetDeviceIDs O O O O

clGetDeviceInfo O O O O

Partitioning a Device

clCreateSubDevices (1.2) O

clRetainDevice (1.2) O O

clReleaseDevice (1.2) O O

14

Contexts

clCreateContext O O O O

clCreateContextFromType O O O O

clRetainContext O O O O

clReleaseContext O O O O

clGetContextInfo O O O O

Command Queues

clCreateCommandQueue O O O O

clRetainCommandQueue O O O O

clReleaseCommandQueue O O O O

clGetCommandQueueInfo O O O O

Buffer Objects

clCreateBuffer O O O O

clCreateSubBuffer O O

clEnqueueReadBuffer O O O O

clEnqueueWriteBuffer O O O O

clEnqueueReadBufferRect O O O O

clEnqueueWriteBufferRect O O O O

clEnqueueCopyBuffer O O O O

clEnqueueCopyBufferRect O O O O

clEnqueueFillBuffer (1.2) O

clEnqueueMapBuffer O O

Image Objects

clCreateImage (1.2) O O

clCreateImage2D (1.1) O O O O

clCreateImage3D (1.1) O O O O

clGetSupportedImageFormats O O O O

clEnqueueReadImage O O O O

clEnqueueWriteImage O O O O

clEnqueueCopyImage O O O O

clEnqueueFillImage (1.2) O

clEnqueueCopyImageToBuffer O O O O

clEnqueueCopyBufferToImage O O O O

clEnqueueMapImage O O

clGetImageInfo O O O O

Querying, Unmapping, Migrating, Retaining, and Releasing Memory Objects

clRetainMemObject O O O O

clReleaseMemObject O O O O

clSetMemObjectDestructorCallback O O O O

clEnqueueUnmapMemObject O O

clEnqueueMigrateMemObjects (1.2) O O

clGetMemObjectInfo O O O O

15

Sampler Objects

clCreateSampler O O O O

clRetainSampler O O O O

clReleaseSampler O O O O

clGetSamplerInfo O O O O

Program Objects

clCreateProgramWithSource O O O O

clCreateProgramWithBinary O O O O

clCreateProgramWithBuiltInKernels (1.2) O O

clRetainProgram O O O O

clReleaseProgram O O O O

clBuildProgram O O O O

clCompileProgram (1.2) O

clLinkProgram (1.2) O

clUnloadPlatformCompiler (1.2) O O

clUnloadCompiler (1.1) O O O O

clGetProgramInfo O O O O

clGetProgramBuildInfo O O O O

Kernel Objects

clCreateKernel O O O O

clCreateKernelsInProgram O O O O

clRetainKernel O O O O

clReleaseKernel O O O O

clSetKernelArg O O O O

clGetKernelInfo O O O O

clGetKernelWorkGroupInfo O O O O

clGetKernelArgInfo (1.2) O O

Executing Kernels

clEnqueueNDRangeKernel O O O O

clEnqueueTask O O O O

clEnqueueNativeKernel O O

Event Objects

clCreateUserEvent O O O O

clSetUserEventStatus O O O O

clWaitForEvents O O O O

clGetEventInfo O O O O

clSetEventCallback O O O O

clRetainEvent O O O O

clReleaseEvent O O O O

Markers, Barriers and Waiting for Events

clEnqueueMarkerWithWaitList (1.2) O O O O

clEnqueueBarrierWithWaitList (1.2) O O O O

16

clEnqueueMarker (1.1) O O O O

clEnqueueBarrier (1.1) O O O O

clEnqueueWaitForEvents (1.1) O O O O

Profiling Operations on Memory Objects and Kernels

clGetEventProfilingInfo O O O O

Flush and Finish

clFlush O O O O

clFinish O O O O

5.3. Built-in Functions Supported

The following table shows all built-in functions of the OpenCL C programming language, and

whether they are supported in the current SnuCL implementation. API functions marked with

“(1.1)” or “(1.2)” are only in OpenCL 1.1 or OpenCL 1.2, respectively. All other functions are

included in both OpenCL 1.1 and OpenCL 1.2. An “O” indicates that a function is fully supported.

A “△” indicates that a function is partially supported. An empty cell indicates that a function is

not supported yet.

Built-in function CPU GPU

Work-Item Functions

get_work_item O O

get_global_size O O

get_global_id O O

get_local_size O O

get_local_id O O

get_num_groups O O

get_group_id O O

get_global_offset O O

Math Functions

acos O O

acosh O O

acospi O O

asin O O

asinh O O

asinpi O O

atan O O

atan2 O O

atanh O O

atanpi O O

17

atan2pi O O

cbrt O O

ceil O O

copysign O O

cos O O

cosh O O

cospi O O

erfc O O

erf O O

exp O O

exp2 O O

exp10 O O

expm1 O O

fabs O O

fdim O O

floor O O

fma O O

fmax O O

fmin O O

fmod O O

fract O O

frexp O O

hypot O O

ilogb O O

ldexp O O

lgamma O O

lgamma_r O O

log O O

log2 O O

log10 O O

log1p O O

logb △ O

mad O O

maxmag O O

minmag O O

modf O O

nan O O

nextafter O O

pow O O

pown O O

powr O O

remainder O O

18

remquo O O

rint O O

rootn O O

round O O

rsqrt O O

sin O O

sincos O O

sinh O O

sinpi O O

sqrt O O

tan O O

tanh O O

tanpi O O

tgamma O O

trunc O O

half_cos O O

half_divide O O

half_exp O O

half_exp2 O O

half_exp10 O O

half_log O O

half_log2 O O

half_log10 O O

half_powr O O

half_recip O O

half_rsqrt O O

half_sin O O

half_sqrt O O

half_tan O O

native_cos O O

native_divide O O

native_exp O O

native_exp2 O O

native_exp10 O O

native_log O O

native_log2 O O

native_log10 O O

native_powr O O

native_recip O O

native_rsqrt O O

native_sin O O

native_sqrt O O

19

native_tan O O

Integer Functions

abs O O

abs_diff O O

add_sat O O

hadd O O

rhadd O O

clamp O O

clz O O

mad_hi O O

mad_sat O O

max O O

min O O

mul_hi O O

rotate O O

sub_sat O O

upsample O O

popcount (1.2) O

mad24 O O

mul24 O O

Common Functions

clamp O O

degrees O O

max O O

min O O

mix O O

radians O O

step O O

smoothstep O O

sign O O

Geometric Functions

cross O O

dot O O

distance O O

length O O

normalize O △

fast_distance O O

fast_length O O

fast_normalize O O

Relational Functions

isequal O O

isnotequal O O

20

isgreater O O

isgreaterequal O O

isless O O

islessequal O O

islessgreater O O

isfinite O O

isinf O O

isnan O O

isnormal O O

isordered O O

isunordered O O

signbit O O

any O O

all O O

bitselect O O

select O O

Vector Data Load and Store Functions

vloadn O O

vstoren O O

vload_half O O

vload_halfn O O

vstore_half O O

vstore_half_rte O O

vstore_half_rtz O O

vstore_half_rtp O O

vstore_half_rtn O O

vstore_halfn_rte O O

vstore_halfn_rtz O O

vstore_halfn_rtp O O

vstore_halfn_rtn O O

vloada_halfn O O

vstorea_halfn O O

vstorea_halfn_rte O O

vstorea_halfn_rtz O O

vstorea_halfn_rtp O O

vstorea_halfn_rtn O O

Synchronization Functions

barrier O O

Explicit Memory Fence Functions

mem_fence O O

read_mem_fence O O

write_mem_fence O O

21

Async Copies from Global to Local Memory,

Local to Global Memory, and Prefetch

async_work_group_copy O O

async_work_group_strided_copy O O

wait_group_events O O

prefetch O O

Atomic Functions

atomic_add O O

atomic_sub O O

atomic_xchg O O

atomic_inc O O

atomic_dec O O

atomic_cmpxchg O O

atomic_min O O

atomic_max O O

atomic_and O O

atomic_or O O

atomic_xor O O

Miscellaneous Vector Functions

vec_step O O

shuffle O O

shuffle2 O O

Printf

printf (1.2) O

Image Read and Write Functions

read_imagef O O

read_imagei O O

read_imageui O O

write_imagef O O

write_imagei O O

write_imageui O O

get_image_width O O

get_image_height O O

get_image_depth O O

get_image_channel_data_type O O

get_image_channel_order O O

get_image_dim O O

get_image_array_size O O

22

5.4. Optional Features

The current SnuCL implementation supports the following optional features in OpenCL 1.2:

 The double scalar and vector types for CPU devices.

 Built-in functions for the double scalar and vector types.

23

6. Collective Communication Extensions

SnuCL provides collective communication operations for manipulating OpenCL buffer objects.

These extensions to OpenCL are similar to MPI collective communication operations. The

following table lists each collective communication operation and its MPI equivalent.

OpenCL MPI Equivalent

clEnqueueBroadcastBuffer MPI_Bcast

clEnqueueScatterBuffer MPI_Scatter

clEnqueueGatherBuffer MPI_Gather

clEnqueueAllGatherBuffer MPI_Allgather

clEnqueueAlltoAllBuffer MPI_Alltoall

clEnqueueReduceBuffer MPI_Reduce

clEnqueueAllReduceBuffer MPI_Allreduce

clEnqueueReduceScatterBuffer MPI_Reduce_scatter

clEnqueueScanBuffer MPI_Scan

The function

cl_int clEnqueueBroadcastBuffer(cl_command_queue * cmd_queue_list,

cl_mem src_buffer,

cl_uint num_dst_buffers,

cl_mem * dst_buffer_list,

size_t src_offset,

size_t * dst_offset_list,

size_t cb,

cl_uint num_events_in_wait_list,

const cl_event * event_wait_list,

cl_event * event)

enqueues commands to broadcast a buffer object identified by src_buffer to all buffer objects in

the list identified by dst_buffer_list.

cmd_queue_list refers to the command-queues that are associated with the compute devices

where the destination buffers identified by dst_buffer_list are located.

num_dst_buffers refers to the number of destination buffers identified by dst_buffer_list.

24

src_offset refers to the offset where to begin copying data from src_buffer.

dst_offset_list refers to the offsets where to begin copying data into dst_buffer_list.

cb refers to the size in bytes to copy.

event_wait_list and num_events_in_wait_list specify events that need to complete before this

particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to

query or queue a wait for this particular command to complete.

The function

cl_int clEnqueueScatterBuffer(cl_command_queue * cmd_queue_list,

cl_mem src_buffer,

cl_uint num_dst_buffers,

cl_mem * dst_buffer_list,

size_t src_offset,

size_t * dst_offset_list,

size_t cb,

cl_uint num_events_in_wait_list,

const cl_event * event_wait_list,

cl_event * event)

enqueues commands to distribute a buffer object identified by src_buffer to each buffer object in

the list identified by dst_buffer_list.

cmd_queue_list refers to the command-queues that are associated with the compute devices

where the destination buffers identified by dst_buffer_list are located.

num_dst_buffers refers to the number of destination buffers identified by dst_buffer_list.

src_offset refers to the offset where to begin copying data from src_buffer.

dst_offset_list refers to the offsets where to begin copying data into dst_buffer_list.

cb refers to the size in bytes to copy.

event_wait_list and num_events_in_wait_list specify events that need to complete before this

25

particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to

query or queue a wait for this particular command to complete.

The function

cl_int clEnqueueGatherBuffer(cl_command_queue cmd_queue,

cl_uint num_src_buffers,

cl_mem * src_buffer_list,

cl_mem dst_buffer,

size_t * src_offset_list,

size_t dst_offset,

size_t cb,

cl_uint num_events_in_wait_list,

const cl_event * event_wait_list,

cl_event * event)

enqueues commands to gather distinct buffer objects in the list identified by dst_buffer_list to a

buffer object identified by src_buffer

cmd_queue refers to the command-queue that is associated with the compute device where the

destination buffer identified by dst_buffer are located.

num_src_buffers refers to the number of source buffers identified by src_buffer_list.

src_offset_list refers to the offsets where to begin copying data from dst_buffer_list.

dst_offset refers to the offset where to begin copying data into dst_buffer.

cb refers to the size in bytes to copy.

event_wait_list and num_events_in_wait_list specify events that need to complete before this

particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to

query or queue a wait for this particular command to complete.

26

The function

cl_int clEnqueueAllGatherBuffer(cl_command_queue * cmd_queue_list,

cl_uint num_buffers,

cl_mem * src_buffer_list,

cl_mem * dst_buffer_list,

size_t * src_offset_list,

size_t * dst_offset_list,

size_t cb,

cl_uint num_events_in_wait_list,

const cl_event * event_wait_list,

cl_event * event)

enqueues commands to gather data from all buffer objects in the list identified by src_buffer_list

and distibute it to all buffer objects in the list identified by dst_buffer_list.

cmd_queue_list refers to the command-queues that are associated with the compute devices

where the destination buffers identified by dst_buffer_list are located.

num_buffers refers to the number of buffers identified by src_buffer_list and dst_buffer_list.

src_offset_list refers to the offsets where to begin copying data from src_buffer_list.

dst_offset_list refers to the offsets where to begin copying data into dst_buffer_list.

cb refers to the size in bytes to copy.

event_wait_list and num_events_in_wait_list specify events that need to complete before this

particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to

query or queue a wait for this particular command to complete.

27

The function

cl_int clEnqueueAlltoAllBuffer(cl_command_queue * cmd_queue_list,

cl_uint num_buffers,

cl_mem * src_buffer_list,

cl_mem * dst_buffer_list,

size_t * src_offset_list,

size_t * dst_offset_list,

size_t cb,

cl_uint num_events_in_wait_list,

const cl_event * event_wait_list,

cl_event * event)

enqueues commands to distribute data from all buffer objects in the list identified by

src_buffer_list to all buffer objects in the list identified by dst_buffer_list in order by index.

cmd_queue_list refers to the command-queues that are associated with the compute devices

where the destination buffers identified by dst_buffer_list are located.

num_buffers refers to the number of buffers identified by src_buffer_list and dst_buffer_list.

src_offset_list refers to the offsets where to begin copying data from src_buffer_list.

dst_offset_list refers to the offsets where to begin copying data into dst_buffer_list.

cb refers to the size in bytes to copy.

event_wait_list and num_events_in_wait_list specify events that need to complete before this

particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to

query or queue a wait for this particular command to complete.

28

The function

cl_int clEnqueueReduceBuffer(cl_command_queue cmd_queue,

cl_uint num_src_buffers,

cl_mem * src_buffer_list,

cl_mem dst_buffer,

size_t * src_offset_list,

size_t dst_offset,

size_t cb,

cl_channel_type datatype,

cl_uint num_events_in_wait_list,

const cl_event * event_wait_list,

cl_event * event)

enqueues commands to reduce values on all buffer objects in the list identified by src_buffer_list

and copy the value to the buffer object identified by dst_buffer.

cmd_queue refers to the command-queue that is associated with the compute device where the

destination buffer identified by dst_buffer are located.

num_src_buffers refers to the number of source buffers identified by src_buffer_list.

src_offset_list refers to the offsets where to begin copying data from dst_buffer_list.

dst_offset refers to the offset where to begin copying data into dst_buffer.

cb refers to the size in bytes to copy.

datatype refers to the following built-in types: int, uint, float, and double.

event_wait_list and num_events_in_wait_list specify events that need to complete before this

particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to

query or queue a wait for this particular command to complete.

29

The function

cl_int clEnqueueAllReduceBuffer(cl_command_queue * cmd_queue_list,

cl_uint num_buffers,

cl_mem * src_buffer_list,

cl_mem * dst_buffer_list,

size_t * src_offset_list,

size_t * dst_offset_list,

size_t cb,

cl_channel_type datatype,

cl_uint num_events_in_wait_list,

const cl_event * event_wait_list,

cl_event * event)

enqueues commands to reduce values on all buffer objects in the list identified by src_buffer_list

and copy the value to all buffer objects in the list identified by dst_buffer_list.

cmd_queue_list refers to the command-queues that are associated with the compute devices

where the destination buffers identified by dst_buffer_list are located.

num_buffers refers to the number of buffers identified by src_buffer_list and dst_buffer_list.

src_offset_list refers to the offsets where to begin copying data from src_buffer_list.

dst_offset_list refers to the offsets where to begin copying data into dst_buffer_list.

cb refers to the size in bytes to copy.

datatype refers to the following built-in types: int, uint, float, and double.

event_wait_list and num_events_in_wait_list specify events that need to complete before this

particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to

query or queue a wait for this particular command to complete.

30

The function

cl_int clEnqueueReduceScatterBuffer(cl_command_queue * cmd_queue_list,

cl_uint num_buffers,

cl_mem * src_buffer_list,

cl_mem * dst_buffer_list,

size_t * src_offset_list,

size_t * dst_offset_list,

size_t cb,

cl_channel_type datatype,

cl_uint num_events_in_wait_list,

const cl_event * event_wait_list,

cl_event * event)

enqueues commands to combine values from all buffer objects in the list identified by

src_buffer_list and scatter the results to all buffer objects in the list identified by dst_buffer_list.

cmd_queue_list refers to the command-queues that are associated with the compute devices

where the destination buffers identified by dst_buffer_list are located.

num_buffers refers to the number of buffers identified by src_buffer_list and dst_buffer_list.

src_offset_list refers to the offsets where to begin copying data from src_buffer_list.

dst_offset_list refers to the offsets where to begin copying data into dst_buffer_list.

cb refers to the size in bytes to copy.

datatype refers to the following built-in types: int, uint, float, and double.

event_wait_list and num_events_in_wait_list specify events that need to complete before this

particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to

query or queue a wait for this particular command to complete.

31

The function

cl_int clEnqueueScanBuffer(cl_command_queue * cmd_queue_list,

cl_uint num_buffers,

cl_mem * src_buffer_list,

cl_mem * dst_buffer_list,

size_t * src_offset_list,

size_t * dst_offset_list,

size_t cb,

cl_channel_type datatype,

cl_uint num_events_in_wait_list,

const cl_event * event_wait_list,

cl_event * event)

enqueues commands to perform an inclusive prefix reduction on data distributed across the

buffer objects in the list identified by src_buffer_list and copy the results to all buffer objects in

the list identified by dst_buffer_list.

cmd_queue_list refers to the command-queues that are associated with the compute devices

where the destination buffers identified by dst_buffer_list are located.

num_buffers refers to the number of buffers identified by src_buffer_list and dst_buffer_list.

src_offset_list refers to the offsets where to begin copying data from src_buffer_list.

dst_offset_list refers to the offsets where to begin copying data into dst_buffer_list.

cb refers to the size in bytes to copy.

datatype refers to the following built-in types: int, uint, float, and double.

event_wait_list and num_events_in_wait_list specify events that need to complete before this

particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to

query or queue a wait for this particular command to complete.

32

7. Known Issues

The following is a list of known issues in the current SnuCL implementation.

 If SnuCL is installed on a single node, multiple GPU devices can’t be used at the same

time.

 Creating an OpenCL memory object (buffer or image) that has

CL_MEM_USE_HOST_PTR flag is an invalid operation in the cluster environment.

 The logb built-in function has a precision problem in CPU devices.

 The following explicit conversions have precision problems in CPU devices:

 uint_rte_float, uint_rtp_float.

 int_rte_float, int_rtp_float, int_rtn_float.

 float_rtp_double, float_rtn_double, float_rtz_double.

 ulong_rte_float, ulong_rtp_float.

 ulong_sat_rte_float, ulong_sat_rtp_float.

 long_sat_rte_float, long_sat_rtp_float, long_sat_rtn_float.

 Variables in the __private and __local address spaces may not be aligned correctly if the

version of gcc is older than 4.4.5.

