SNUuCL User Manual

Release 1.2 Beta Version June 2012

Center for Manycore Programming
School of Computer Science and Engineering
Seoul National University, Seoul 151-744, Korea

http://aces.snu.ac.kr

1. Introduction

SnuCL is an OpenCL framework and freely available, open-source software developed at Seoul
National University. It naturally extends the original OpenCL semantics to the heterogeneous
cluster environment. The target cluster consists of a single host node and multiple compute nodes.
They are connected by an interconnection network, such as Gigabit and InfiniBand switches. The
host node contains multiple CPU cores and each compute node consists of multiple CPU cores
and multiple GPUs. For such clusters, SnuCL provides a system image running a single
operating system instance to the user. A GPU or a set of CPU cores becomes an OpenCL
compute device. SnuCL allows the application to utilize compute devices in a compute node as if
they were in the host node. SnuCL achieves both high performance and ease of programming in
a heterogeneous cluster environment.

2. Installation

2.1. Supported Platforms

SnuCL builds on 32-bit, 64-bit flavors of Linux. SnuCL runs on a single heterogeneous
CPU/GPU system (i.e. a single node), or a heterogeneous CPU/GPU clusters consisting of a
single host node and multiple compute nodes. The following processors are supported by SnuCL
and become SnuCL compute devices.

* x86 CPUs

* ARM CPUs

* PowerPC CPUs
* NVIDIAGPUs

To install SnuCL on a single node, see section 2.2. To install SnuCL on a cluster, see section 2.3.

2.2. Installing SnuCL on a single node

Prerequisite. To install SnuCL on a single node, you must install the following:

* The vendor-provided driver and OpenCL runtime if you want to use a GPU device (e.g.
CUDA Toolkit).

Installing. Download the SnuCL framework source code from http://snucl.snu.ac.kr. The
package includes the SnuCL runtime, source-to-source translators, and all libraries required by
the framework.

Put the gzipped tarball in your work directory. Then, untar it and configure shell environment
variables for SnuCL.

user@computer:~/$ tar zxvf snucl.1.2.tar.gz
user@computer:~/$ export SNUCLROOT=$HOME/snucl
user@computer:~/$ export PATH=$PATH:$SNUCLROOT/bin

http://snucl.snu.ac.kr/

user@computer:~/$ export LD_LIBRARY_PATH=$LD_LIBRARY_ PATH:$SNUCLROOT/lib |

Build the SnuCL distribution using a script named install.sh. You should specify devices in the
target system as follows:

* To use a CPU device (multi-core CPUs):

user@computer:~/$ cd snucl/build
user@computer:~/snucl/build$./install.sh X86

e To use both a CPU device and a GPU device:

user@computer:~/$ cd snucl/build
user@computer:~/snucl/build$./install.sh X86 LEGACY

An example run. You should now test running a SnuCL application and check it runs correctly.
The sample example is started on the target system by entering the following commands:

user@computer:~/$ cd snucl/apps/sample
user@computer:~/ snucl /apps/sample$ make
user@computer:~/ snucl /apps/sample$./bin/sample
[0] 100

[1] 110

[2] 120

[3] 130

[4] 140

[5] 150

[6] 160

[7]170

[8] 180

[9] 190

[10] 200

[11] 210

[12] 220

[13] 230

[14] 240

[15] 250

[16] 260

[17] 270

[18] 280

[19] 290

[20] 300
[21] 310
[22] 320
[23] 330
[24] 340
[25] 350
[26] 360
[27] 370
[28] 380
[29] 390
[30] 400
[31] 410
user@computer:~/snucl/apps/sample$

2.3. Installing SnuCL on a cluster

Prerequisite. To install SnuCL for a cluster, you must install the following in both the host node
and the compute nodes:

* An MPI implementation (e.g., Open MPI).

* The vendor-provided driver and OpenCL runtime if you want to use GPU devices (e.g.
CUDA Toolkit).

Additionally, you must have an account on all the nodes. You must be able to ssh between the
host node and the compute nodes without using a password.

Installing. You must install SnuCL in all the nodes to run OpenCL applications on the cluster.

Download the SnuCL framework source code from http://snucl.snu.ac.kr. The package includes
the SnuCL runtime, source-to-source translators, and all libraries required by the framework.

Put the gzipped tarball in your work directory and untar it.

user@computer:~/$ tar zxvf snucl.1.2.tar.gz

Then, configure shell environment variables for SnuCL. Add the following configuration in your
shell startup scripts (e.g., .bashrc, .cshrc, .profile, etc.)

| export SNUCLROOT=$HOME/snucl

http://snucl.snu.ac.kr/

export PATH=$PATH:$SNUCLROOT/bin
export LD_LIBRARY PATH=$LD_ LIBRARY_ PATH:$SNUCLROOT/Iib

Build the SnuCL distribution using a script named install.sh. You should specify devices in the
compute nodes as follows:

e To use CPU devices (multi-core CPUs) in the compute nodes:

user@computer:~/$ cd snucl/build
user@computer:~/snucl/build$./install.sh X86 CLUSTER

* To use both CPU devices and GPU devices in the compute nodes:

user@computer:~/$ cd snucl/build
user@computer:~/snucl/build$./install.sh X86 LEGACY CLUSTER

An example run. You should now test running a SnuCL application and check it runs correctly.
First, you should edit snucl_nodes in the directory $SNUCLROOT/bin. The file specifies the
nodes’ hostnames in the cluster. (See section 3.2)

The sample example is started on the target cluster by entering the following commands:

user@computer:~/$ cd snucl/apps/sample
user@computer:~/ snucl /apps/sample$ make cluster=1
user@computer:~/ snucl /apps/sample$ snuclrun 1 ./bin/sample
[0] 100

[1] 110

[2] 120

[3] 130

[4] 140

[5] 150

[6] 160

[7]170

[8] 180

[9] 190

[10] 200

[11] 210

[12] 220

[13] 230

[14] 240

[15] 250

3. Using SnuCL

3.1. Building OpenCL applications using ShuCL

With SnuCL, the user can launch a kernel to a compute device or manipulate a memory object in
a remote node using only OpenCL API functions. This enables OpenCL applications written for a
single heterogeneous system to run on the cluster without any modification.

You only need to link your applications with SnuCL libraries to run your OpenCL applications in
the cluster environment. You may use the Makefile template in the directory
$SNUCLROOT/apps/sample. Set the variable cluster to 0 if SnuCL is installed on a single node
orto 1 if SnuCL is installed on a cluster.

EXECUTABLE := <program name>
CCFILES := <source files>

cluster := <0 or 1>

include $(SNUCLROOT)/common.mk

3.2. Running OpenCL applications using SnuCL

To run an OpenCL application on a single node, just execute the application. To run an OpenCL
application on a cluster, you can use a script named snuclrun as follows:

snuclrun <# of compute nodes> <program> [<program arguments>]

snuclrun uses a hostfile, $SNUCLROOT/bin/snucl_nodes, which specifies the nodes’ hostnames
in the cluster. snucl_nodes follows the hostfile format in the installed MPI implementation.

hostnode slots=1 max_slots=1
computenodel slots=1 max_slots=1
computenode? slots=1 max_slots=1

4. Understanding SnuCL

4.1. What SnuCL does with your OpenCL applications

R S &

| Main memory |
A system image running a single operating system instance

1he

SnuCL [

Target cluster

Host node
CPU CPU
Lcore J| core] | | Lcore J{ core)
|core core core Il core I .
[Interconnection
’ ’ network
| Main memory

[core J[core } | | [core J [core |
core | core core ||

[core][core core

|

I Main memory I

SnuCL provides a system image running a single operating system instance for heterogeneous
CPU/GPU clusters to the user. It allows the application to utilize compute devices in a compute
node as if they were in the host node. The user can launch a kernel to a compute device or
manipulate a memory object in a remote node using only OpenCL API functions. This enables
OpenCL applications written for a single node to run on the cluster without any modification.
That is, with SnuCL, an OpenCL application becomes portable not only between heterogeneous
computing devices in a single node, but also between those in the entire cluster environment.

remy — . r=- Completion queue
-2 e e W
1 . i /, _’m_'_..: GPU device
H 0 o=
— - CC-—— . =
' e . > CTTTT—Y—te GPU device .
X —- (T -—T : (B '
+ Host L e et A I 3 : 2 Compute :
' N - : : 5
E nOde Enqueue p— p— ; '9 - —— > P F) CPU device nOde
O beam ot nn- 6
- T TTTH—T At
[y —] Interconnection [* - CPU device
—H:n:l:D-— network . 7 g HHIEE {:.
Host thread Command scheduler : E Comma;c; handler Ready queue LDevice thread — CUthread |

This figure shows the organization of the SnuCL runtime. It consists of two different parts for the
host node and a compute node.

The runtime for the host node runs two threads: host thread and command scheduler. When a
user launches an OpenCL application in the host node, the host thread in the host node executes
the host program in the application. The host thread and command scheduler share the OpenCL
command-queues. A compute device may have one or more command-queues. The host thread

enqueues commands to the command-queues (@ in the figure). The command scheduler

schedules the enqueued commands across compute devices in the cluster one by one (®).

When the command scheduler in the host node dequeues a command from a command-queue,
the command scheduler issues the command by sending a command message (®) to the target

compute node that contains the target compute device associated with the command-queue. A
command message contains the information required to execute the original command. To
identify each OpenCL object, the runtime assigns a unique ID to each OpenCL object, such as
contexts, compute devices, buffers (memory objects), programs, kernels, events, etc. The
command message contains these 1Ds.

After the command scheduler sends the command message to the target compute node, it calls a
non-blocking receive communication API function to wait for the completion message from the
target node. The command scheduler encapsulates the receive request in the command event
object and adds the event object in the issue list. The issue list contains event objects associated
with the commands that have been issued but have not completed yet.

The runtime for a compute node runs a command handler thread. The command handler receives
command messages from the host node and executes them across compute devices in the
compute node. It creates a command object and an associated event object from the message.
After extracting the target device information from the message, the command handler enqueues

the command object to the ready-queue of the target device (@). Each compute device has a
10

single ready-queue. The ready-queue contains commands that are issued but not launched to the
associated compute device yet.

The runtime for a compute node runs a device thread for each compute device in the node. If a
CPU device exists in the compute node, each core in the CPU device runs a CU thread to
emulate PEs. The device thread dequeues a command from its ready-queue and launches the
kernel to the associated compute device when the command is a kernel-execution command and

the compute device is idle (®). If it is a memory command, the device thread executes the
command directly.

When the compute device completes executing the command, the device thread updates the
status of the associated event to completed, and then inserts the event to the completion queue in

the compute node (®). The command handler in each compute node repeats handling commands

and checking the completion queue in turn. When the completion queue is not empty, the
command handler dequeues the event from the completion queue and sends a completion

message to the host node (@).

The command scheduler in the host node repeats scheduling commands and checking the event
objects in the issue list in turn until the OpenCL application terminates. If the receive request
encapsulated in an event object in the issue list completes, the command scheduler removes the
event from the issue list and updates the status of the dequeued event from issued to completed

(®).

11

5. Functions Supported

SnuCL follows the OpenCL core specification version 1.2 for CPU devices and 1.1 for GPU
devices. This section summarizes the supported functions of the current SnuCL implementation.

5.1. Tested Platforms

SnuCL has been tested on two cluster systems (Cluster A and Cluster B). Cluster A is used to test
CPU devices, and Cluster B is used to test GPU devices. Cluster A consists of the following nodes:

* Host node
o AMD® Opteron® Processor 4184
o Red Hat Enterprise Linux Server 6.1
o gccd.ds
o Open MPI 1.4.3

e Compute node
o AMD® Opteron Processor 6172
o Red Hat Enterprise Linux Server 6.1
o gccdds
o Open MPI 1.4.3

Cluster B consists of the following nodes:

* Host node
o Intel® Xeon® Processor X5680
= Red Hat Enterprise Linux Server 5.5

o gccd.l?

12

o Open MPI1.4.1
o CUDA Toolkit 4.2

e Compute node

o Intel® Xeon® Processor X5660

o NVIDIA GeForce GTX 480

o Red Hat Enterprise Linux Server 5.5

o gcecdl2
s Open MPI 1.4.1

o CUDA Toolkit 4.2

5.2. APl Functions Supported

The following table shows all API functions in the OpenCL specification version 1.1 and version
1.2, and whether they are supported in the current SnuCL implementation. API functions marked
with “(1.1)” or “(1.2)” are only in OpenCL 1.1 or OpenCL 1.2, respectively. All other functions

are included in both OpenCL 1.1 and OpenCL 1.2. An “0” indicates that a function is fully

supported. A “A” indicates that a function is partially supported. An empty cell indicates that a

function is not supported yet.

. Single node Cluster
AP function CPU | GPU | CPU | GPU
Querying Platform Info
clGetPlatformiDs 0] 0] 0] o]
clGetPlatforminfo 0] 0] 0] o]
Querying Devices
clGetDevicelDs 0] 0] 0] o]
clGetDevicelnfo 0] 0] 0] o]
Partitioning a Device
clCreateSubDevices (1.2) 0]
clRetainDevice (1.2) 0 0
clReleaseDevice (1.2) 0 0

13

Contexts

clCreateContext

clCreateContextFromType

cIRetainContext

cIReleaseContext

clGetContextInfo

Oo|0|0|0 |0

Oo|0|0|0 |0

Oo|0|0|0 |0

Oo|0|0|0 |0

Command Queues

clCreateCommandQueue

o

clRetainCommandQueue

clReleaseCommandQueue

clGetCommandQueuelnfo

Oo|Oo|Oo

Oo|0|0|0o

Oo|0|0|0O

Oo|0|0|0o

Buffer Objects

clCreateBuffer

o

o

clCreateSubBuffer

clEnqueueReadBuffer

clEnqueueWriteBuffer

clEnqueueReadBufferRect

clEnqueueWriteBufferRect

clEnqueueCopyBuffer

clEnqueueCopyBufferRect

O|0|0O|0|O0|O0|0O|0O

O|0|0|0|0|0O

O|0|0|0|0|0O

clEnqueueFillBuffer (1.2)

clEnqueueMapBuffer

O|0O|O0|O0|O0|0|O0|0|0|0

o

Image Objects

clCreatelmage (1.2)

clCreatelmage2D (1.1)

clCreatelmage3D (1.1)

clGetSupportedimageFormats

clEnqueueReadlmage

clEnqueueWritelmage

clEnqueueCopylmage

O|0|0|0|0|0O

O|0|0O|0|0|0O|0O

Oo|0|0|0|0|0O

clEnqueueFillimage (1.2)

clEnqueueCopylmageToBuffer

clEnqueueCopyBufferTolmage

o|o

o|o

clEnqueueMaplmage

O|0|0|0O|0|O0|O|0O|0O|0O|O

clGetlmagelnfo

o

o

Querying, Unmapping, Migrating, Retaining, and Releas

gM

emory Obj

ects

clRetainMemObject

o

o

clReleaseMemObject

o

clSetMemObjectDestructorCallback

o

clEnqueueUnmapMemObject

O|0|0|0|F5|0|0|0|0

clEnqueueMigrateMemObijects (1.2)

o

clGetMemObijectinfo

o|0o|0|0|0O

o

14

Sampler Objects

clCreateSampler

o

clRetainSampler

o

clReleaseSampler

clGetSamplerinfo

o|Oo

O|0|0|0O

O|0|0|0O

O|0|0|0O

Program Objects

clCreateProgramWithSource

o

o

clCreateProgramWithBinary

clCreateProgramWithBuiltinKernels (1.2)

clRetainProgram

clReleaseProgram

clBuildProgram

O|O0|0|0|0|0O

clCompileProgram (1.2)

clLinkProgram (1.2)

clUnloadPlatformCompiler (1.2)

clUnloadCompiler (1.1)

clGetPrograminfo

o|Oo

o|Oo

clGetProgramBuildInfo

O|0O|0O|0O|O0|O0|0|O|0O|0|0O|0O

o

Oo|0|0|0O

o

Kernel Obj

ects

clCreateKernel

clCreateKernelsInProgram

cIRetainKernel

cIReleaseKernel

clSetKernelArg

clGetKernelinfo

clGetKernelWorkGrouplnfo

O|0|O0|O0|0O|0|0

O|0|O0|O0|0|0|0O

clGetKernelArglnfo (1.2)

O|O0|O0|O0|O0|0|0O|O

O|O0|O0|O0|O0|O0|0O|O

Executing Kernel

w

clEnqueueNDRangeKernel

o

clEnqueueTask

o|o

o

o|o

clEnqueueNativeKernel

Oo|0|0O

o

Event Objects

clCreateUserEvent

clSetUserEventStatus

clWaitForEvents

clGetEventInfo

clSetEventCallback

clRetainEvent

Oo|0o|0|0|0|0O

Oo|0o|0|0|0|0O

cIReleaseEvent

o]

o

O|0|O0|0|0|O0|0O

O|0|0|0|0|O0|0O

Markers, Barriers and Waiting for

Events

clEngueueMarkerWithWaitL.ist (1.2)

o]

]

]

clEnqueueBarrierWithWaitL.ist (1.2)

o

15

clEnqueueMarker (1.1) 0] 0] 0] 0
clEnqueueBarrier (1.1) 0] 0] 0] 0
clEnqueueWaitForEvents (1.1) 0 0 0 0
Profiling Operations on Memory Objects and Kernels
clGetEventProfilinglnfo | o | o | o 0
Flush and Finish
clFlush 0 0 0 0
clFinish 0 0 0 0

5.3. Built-in Functions Supported

The following table shows all built-in functions of the OpenCL C programming language, and
whether they are supported in the current SnuCL implementation. API functions marked with
“(1.1)” or “(1.2)” are only in OpenCL 1.1 or OpenCL 1.2, respectively. All other functions are
included in both OpenCL 1.1 and OpenCL 1.2. An “0” indicates that a function is fully supported.
A “A” indicates that a function is partially supported. An empty cell indicates that a function is
not supported yet.

Built-in function | CPU | GPU
Work-Item Functions
get_work_item 0] o]
get_global_size 0] 0
get_global _id 0] 0
get_local size 0] 0]
get_local id 0] 0]
get_num_groups 0] o]
get_group id 0] 0]
get_global offset 0] 0]
Math Functions
acos 0] 0
acosh 0] 0]
acospi 0] 0]
asin 0] 0]
asinh 0] 0]
asinpi 0] 0]
atan 0] 0
atan2 0 0
atanh 0 0
atanpi 0 0

16

atan2pi

cbrt

ceil

copysign

COS

cosh

cospi

erfc

erf

exp

exp2

expl0

expml

fabs

fdim

floor

fma

fmax

fmin

fmod

fract

frexp

hypot

ilogb

Idexp

Ilgamma

lgamma_r

log

log2

log10

loglp

logb

mad

maxmag

minmag

modf

nan

nextafter

pow

pown

powr

remainder

O|0|0|0|0|0|O0|O0|O|O|P|O|O|O|O|O0O|O|O|O0O|0O|0O|O|0O|0O|O|O|O|O|O|O|O|O|0O|0O|O|0O|0O|0O|0O|0O|0O|0O

O|0|0|0O|0|0|O0|0O|0O|O0|O|O|O|O|0O|0O|0O|0O|O0|0O|0O|0O|0O|0O|O|O|0O|O|O|O|O|O|0O|0O|O|0O|0O|0O|0O|0O|0|0

17

remquo

rint

rootn

round

rsqrt

sin

sincos

sinh

sinpi

sqrt

tan

tanh

tanpi

tgamma

trunc

half _cos

half_divide

half_exp

half exp2

half_expl0

half_log

half log2

half _log10

half _powr

half_recip

half rsqrt

half_sin

half_sqrt

half tan

native_cos

native divide

native_exp

native_exp?2

native _expl10

native_log

native log2

native_log10

native_powr

native_recip

native_rsqgrt

native_sin

native_sqrt

O|0|0|0|0|0|O0|0O|O0|0O|O|O|O|O|0O|0O|0O|0O|O0|0O|0O|O0|0O|0O|O|O|O|O|O|O|O|O|O|O|O|0O|0O|0O|0O|0O|0O|0O

O|0|0|0O|0|0|O0|0O|0O|O0|O|O|O|O|0O|0O|0O|0O|O0|0O|0O|0O|0O|0O|O|O|0O|O|O|O|O|O|0O|0O|O|0O|0O|0O|0O|0O|0|0

18

native_tan

|

o

o

Integer Functions

abs

abs_diff

add_sat

hadd

rhadd

clamp

clz

mad_hi

mad_sat

max

min

mul_hi

rotate

sub_sat

upsample

O|0O|0O|0O|0O|0O|0O|0O|O|0O|O|0O|0O|0O|0

popcount (1.2)

mad24

mul24

O|O0|0O|0O|O|O|0O|O|O|0O|O|O|O|O|0O|0O|0O|0

o|Oo

Common Functions

clamp

degrees

max

min

mix

radians

step

smoothstep

sign

O|O0|O0|0|O0|0 |00 |0

O|O0|O0|0|0|0|0|0O|0O

Geometric Functions

Cross

dot

distance

length

normalize

fast_distance

fast_length

fast_normalize

Oo|0|0|0|0|0O|0O|O

o|jo|Oo|>|O|O|O|O

Relational Functions

isequal

o

o

isnotequal

19

isgreater

isgreaterequal

isless

islessequal

islessgreater

isfinite

isinf

isnan

isnormal

isordered

isunordered

signbit

any

all

bitselect

O|O0|0O|0O|0O|0O|O0|O|0O|0|0O|0O|0O|0O|0O

select

o

O|0O|0O|O0|O0|O0|O|O|O|O|0O|O|0O|0O 0|0

Vector Data Load and Store Functions

vioadn

vstoren

o|Oo

vload_half

vload_halfn

vstore_half

vstore_half rte

vstore_half rtz

vstore _half rtp

vstore_half_rtn

vstore halfn_rte

vstore_halfn_rtz

vstore _halfn_rtp

vstore_halfn_rtn

vloada_halfn

vstorea_halfn

vstorea_halfn_rte

vstorea_halfn_rtz

vstorea_halfn_rtp

vstorea_halfn_rtn

O|0|0|O0|0|0|0O|0O|O0|O|O|0O|0O|0O|0O|0O|0O

O|0O|O0|0O|0O|0|0O|0O|0O|O0O|O|O|O|O|O|O|0O|0O|O

Synchronization Functions

barrier

|

o]

o

Explicit Memory Fence Functions

mem_fence

o]

read_mem_fence

o

write_mem_fence

o]

20

Async Copies from Global to Local Memory,
Local to Global Memory, and Prefetch

async_work_group_copy 0

async_work_group_strided_copy

wait_group_events

O|0|0O

prefetch

O|0|0|0o

Atomic Functions

atomic_add

atomic_sub

atomic_xchg

atomic_inc

atomic_dec

atomic_cmpxchg

atomic_min

atomic_max

atomic_and

O|O0|0|0|0|0|0|0|0|0

atomic_or

atomic_xor 0

O|O0|O|0O|O|0O|0|0O|0O|0O|O

Miscellaneous Vector Functions

vec_step 0

o

shuffle 0

o

shuffle2 0

o

Printf

printf (1.2) | o

Image Read and Write Functions

read_imagef 0]

read_imagei

read_imageui

write_imagef

write_imagei

write_imageui

get_image_width

get_image_height

get_image_depth

get_image channel data type

get_image_channel_order

get_image_dim

O|O0|0O|0O|0|0|0O|O0|0|0|0O|0O

get_image array size

O|0|0O|0|0O|O0|O|O|O|0O|O0|0O|O

21

5.4. Optional Features
The current SnuCL implementation supports the following optional features in OpenCL 1.2:
e The double scalar and vector types for CPU devices.

e Built-in functions for the double scalar and vector types.

22

6. Collective Communication Extensions

SnuCL provides collective communication operations for manipulating OpenCL buffer objects.
These extensions to OpenCL are similar to MPI collective communication operations. The
following table lists each collective communication operation and its MPI equivalent.

OpenCL MPI Equivalent
clEngueueBroadcastBuffer MPI1_Bcast
clEnqueueScatterBuffer MPI1_Scatter
clEngueueGatherBuffer MPI1_Gather
clEnqueueAllGatherBuffer MPI1_Allgather
clEnqueueAlltoAllBuffer MPI1_Alltoall
clEnqueueReduceBuffer MPI1_Reduce
clEnqueueAllReduceBuffer MPI1_Allreduce
clEnqueueReduceScatterBuffer MPI_Reduce_scatter
clEnqueueScanBuffer MPI1_Scan

The function

cl_int clEnqueueBroadcastBuffer(cl_command_queue * cmd_queue_list,
cl_mem src_buffer,
cl_uint num_dst_buffers,
cl_mem * dst_buffer_list,
size_t src_offset,
size_t * dst_offset_list,
size_tchb,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event)

enqueues commands to broadcast a buffer object identified by src_buffer to all buffer objects in
the list identified by dst_buffer_list.

cmd_queue_list refers to the command-queues that are associated with the compute devices
where the destination buffers identified by dst_buffer_list are located.

num_dst_buffers refers to the number of destination buffers identified by dst_buffer_list.
23

src_offset refers to the offset where to begin copying data from src_buffer.
dst_offset_list refers to the offsets where to begin copying data into dst_buffer_list.
cb refers to the size in bytes to copy.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to
query or queue a wait for this particular command to complete.

The function

cl_int clEnqueueScatterBuffer(cl_command_queue * cmd_queue_list,
cl_mem src_buffer,
cl_uint num_dst_buffers,
cl_mem * dst_buffer_list,
size t src_offset,
size t * dst_offset_list,
size t cb,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event)

enqueues commands to distribute a buffer object identified by src_buffer to each buffer object in
the list identified by dst_buffer_list.

cmd_queue_list refers to the command-queues that are associated with the compute devices
where the destination buffers identified by dst_buffer_list are located.

num_dst_buffers refers to the number of destination buffers identified by dst_buffer_list.
src_offset refers to the offset where to begin copying data from src_buffer.
dst_offset_list refers to the offsets where to begin copying data into dst_buffer_list.

cb refers to the size in bytes to copy.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
24

particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to
query or queue a wait for this particular command to complete.

The function

cl_int clEnqueueGatherBuffer(cl_command_queue cmd_queue,
cl_uint num_src_buffers,
cl_mem * src_buffer_list,
cl_mem dst_buffer,
size_t * src_offset_list,
size t dst_offset,
size_t cb,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event)

enqueues commands to gather distinct buffer objects in the list identified by dst_buffer_list to a
buffer object identified by src_buffer

cmd_queue refers to the command-queue that is associated with the compute device where the
destination buffer identified by dst_buffer are located.

num_src_buffers refers to the number of source buffers identified by src_buffer_list.
src_offset_list refers to the offsets where to begin copying data from dst_buffer _list.
dst_offset refers to the offset where to begin copying data into dst_buffer.

cb refers to the size in bytes to copy.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to
query or queue a wait for this particular command to complete.

25

The function

cl_int clEnqueueAllGatherBuffer(cl_command_queue * cmd_queue_list,
cl_uint num_buffers,
cl_mem * src_buffer_list,
cl_mem * dst_buffer_list,
size_t * src_offset_list,
size t * dst_offset_list,
size t cb,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event)

enqueues commands to gather data from all buffer objects in the list identified by src_buffer_list
and distibute it to all buffer objects in the list identified by dst_buffer_list.

cmd_queue_list refers to the command-queues that are associated with the compute devices
where the destination buffers identified by dst_buffer_list are located.

num_buffers refers to the number of buffers identified by src_buffer_list and dst_buffer_list.
src_offset_list refers to the offsets where to begin copying data from src_buffer_list.
dst_offset_list refers to the offsets where to begin copying data into dst_buffer_list.

cb refers to the size in bytes to copy.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to
query or queue a wait for this particular command to complete.

26

The function

cl_int clEnqueueAlltoAllBuffer(cl_command_queue * cmd_queue_list,
cl_uint num_buffers,
cl_mem * src_buffer_list,
cl_mem * dst_buffer_list,
size_t * src_offset_list,
size t * dst_offset_list,
size t cb,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event)

enqueues commands to distribute data from all buffer objects in the list identified by
src_buffer_list to all buffer objects in the list identified by dst_buffer_list in order by index.

cmd_queue_list refers to the command-queues that are associated with the compute devices
where the destination buffers identified by dst_buffer_list are located.

num_buffers refers to the number of buffers identified by src_buffer_list and dst_buffer_list.
src_offset_list refers to the offsets where to begin copying data from src_buffer_list.
dst_offset_list refers to the offsets where to begin copying data into dst_buffer_list.

cb refers to the size in bytes to copy.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to
query or queue a wait for this particular command to complete.

27

The function

cl_int clEnqueueReduceBuffer(cl_command_queue cmd_queue,
cl_uint num_src_buffers,
cl_mem * src_buffer_list,
cl_mem dst_buffer,
size_t * src_offset_list,
size_t dst_offset,
size t cb,
cl_channel_type datatype,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event)

enqueues commands to reduce values on all buffer objects in the list identified by src_buffer_list
and copy the value to the buffer object identified by dst_buffer.

cmd_queue refers to the command-queue that is associated with the compute device where the
destination buffer identified by dst_buffer are located.

num_src_buffers refers to the number of source buffers identified by src_buffer_list.
src_offset_list refers to the offsets where to begin copying data from dst_buffer_list.
dst_offset refers to the offset where to begin copying data into dst_buffer.

cb refers to the size in bytes to copy.

datatype refers to the following built-in types: int, uint, float, and double.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to
query or queue a wait for this particular command to complete.

28

The function

cl_int clEnqueueAllReduceBuffer(cl_command_queue * cmd_queue_list,
cl_uint num_buffers,
cl_mem * src_buffer_list,
cl_mem * dst_buffer_list,
size_t * src_offset_list,
size t * dst_offset_list,
size t cb,
cl_channel_type datatype,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event)

enqueues commands to reduce values on all buffer objects in the list identified by src_buffer_list
and copy the value to all buffer objects in the list identified by dst_buffer_list.

cmd_queue_list refers to the command-queues that are associated with the compute devices
where the destination buffers identified by dst_buffer_list are located.

num_buffers refers to the number of buffers identified by src_buffer_list and dst_buffer_list.
src_offset_list refers to the offsets where to begin copying data from src_buffer_list.
dst_offset_list refers to the offsets where to begin copying data into dst_buffer_list.

cb refers to the size in bytes to copy.

datatype refers to the following built-in types: int, uint, float, and double.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to
query or queue a wait for this particular command to complete.

29

The function

cl_int clEnqueueReduceScatterBuffer(cl_command_queue * cmd_queue_list,
cl_uint num_buffers,
cl_mem * src_buffer_list,
cl_mem * dst_buffer_list,
size_t * src_offset_list,
size t * dst_offset_list,
size_t cb,
cl_channel_type datatype,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event)

enqueues commands to combine values from all buffer objects in the list identified by
src_buffer_list and scatter the results to all buffer objects in the list identified by dst_buffer_list.

cmd_queue_list refers to the command-queues that are associated with the compute devices
where the destination buffers identified by dst_buffer_list are located.

num_buffers refers to the number of buffers identified by src_buffer_list and dst_buffer_list.
src_offset_list refers to the offsets where to begin copying data from src_buffer_list.
dst_offset_list refers to the offsets where to begin copying data into dst_buffer_list.

cb refers to the size in bytes to copy.

datatype refers to the following built-in types: int, uint, float, and double.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to
query or queue a wait for this particular command to complete.

30

The function

cl_int clEnqueueScanBuffer(cl_command_queue * cmd_queue_list,
cl_uint num_buffers,
cl_mem * src_buffer_list,
cl_mem * dst_buffer_list,
size_t * src_offset_list,
size t * dst_offset_list,
size t cb,
cl_channel_type datatype,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event)

enqueues commands to perform an inclusive prefix reduction on data distributed across the
buffer objects in the list identified by src_buffer_list and copy the results to all buffer objects in
the list identified by dst_buffer_list.

cmd_queue_list refers to the command-queues that are associated with the compute devices
where the destination buffers identified by dst_buffer_list are located.

num_buffers refers to the number of buffers identified by src_buffer_list and dst_buffer_list.
src_offset_list refers to the offsets where to begin copying data from src_buffer_list.
dst_offset_list refers to the offsets where to begin copying data into dst_buffer_list.

cb refers to the size in bytes to copy.

datatype refers to the following built-in types: int, uint, float, and double.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

event returns an event object that identifies this particular broadcast command and can be used to
query or queue a wait for this particular command to complete.

31

7.

Known Issues

The following is a list of known issues in the current SnuCL implementation.

If SnuCL is installed on a single node, multiple GPU devices can’t be used at the same
time.

Creating an OpenCL memory object (buffer or image) that has
CL_MEM_USE_HOST_PTR flag is an invalid operation in the cluster environment.

The logb built-in function has a precision problem in CPU devices.

The following explicit conversions have precision problems in CPU devices:
o uint_rte_float, uint_rtp_float.

o int_rte_float, int_rtp_float, int_rtn_float.

o float_rtp_double, float_rtn_double, float_rtz_double.

s ulong_rte_float, ulong_rtp_float.

s ulong_sat_rte float, ulong_sat_rtp_float.

o long_sat_rte_float, long_sat_rtp_float, long_sat_rtn_float.

Variables in the __ private and __local address spaces may not be aligned correctly if the
version of gcc is older than 4.4.5.

32

