
SnuCL-Tr: OpenCL to CUDA
Quick Start Guide

Requirements
The OpenCL to CUDA translator in SnuCL-Tr requires that you have the latest CUDA Toolkit installed. You

can download the CUDA Toolkit from https://developer.nvidia.com/cuda-downloads.

How to Install
Perform the following steps to install the OpenCL to CUDA translator in SnuCL-Tr and verify the installation.

1. Untar Source Code

Download the SnuCL-Tr source code from http://snucl.snu.ac.kr/snucl-tr.html. Untar it on your

preferred location.

2. LLVM

You need to configure the LLVM compiler first and then compile the program. It may take a long

time to compile for LLVM.

Note: If your system already has Clang, then you need to configure and build the LLVM compiler

manually with the following flags.

Example:

3. The Runtime Library

Build the runtime library (i.e., wrapper functions) at the location below.

As a result, the shared library will be created in the following location:

$ tar xvzf snucl-tr.tar.gz

$ cd opencl2cuda/build
$../llvm.mod/configure
$ make BUILD_EXAMPLES=1

CC=gcc CXX=g++

$../llvm.mod/configure CC=gcc CXX=g++
$ make CC=gcc CXX=g++ BUILD_EXAMPLES=1

$ cd opencl2cuda/common/common/
$ make

https://developer.nvidia.com/cuda-downloads
http://snucl.snu.ac.kr/snucl-tr.html

 opencl2cuda/common/lib/libsnuclOC.a

4. Set Environment Variables

There are two environment variables that have to be set to use the OpenCL to CUDA translator:

OPENCL_TO_CUDA and OPENCL_TO_CUDA_GPU_ARCH (i.e., your GPU’s compute capability). You

can check the GPU’s compute capability at https://developer.nvidia.com/cuda-gpus.

Open your .bashrc to edit.

At the bottom of the file, insert the two lines shown below.

For example, if your GPU’s compute capability is 3.0, then modify the

OPENCL_TO_CUDA_GPU_ARCH variable as shown below.

To apply modified environment variables, go to your home directory and execute the following

command.

Understanding the OpenCL to CUDA Translator
In OpenCL, the host code and device code are separated. Hence, we translate them separately. The

OpenCL device code (e.g., kernel.cl) is translated to the CUDA device code (e.g., kernel.cl.cu) by our

source-to-source translator. The OpenCL host API functions are implemented as wrapper functions. We

use CUDA driver API functions to implement the wrappers.

$ vi $(HOME)/.bashrc

export OPENCL_TO_CUDA=$(HOME)/opencl2cuda
export OPENCL_TO_CUDA_GPU_ARCH=compute_xx

export OPENCL_TO_CUDA_GPU_ARCH=compute_30

$ source .bashrc

https://developer.nvidia.com/cuda-gpus

How to Build a Program Using the OpenCL to CUDA Translator
 Makefile Template

In sample directory, a Makefile template for the OpenCL to CUDA translator is provided with a

sample application. Makefile can be written as you deem fit, but there are four things you have

to follow to use the translator.

 Use g++ compiler

 Add CUDA and the runtime library path to search

 Link CUDA and the runtime library

 Add CUDA header file path

Translation Result for the Sample Application
When you build your program with the OpenCL to CUDA translator, translated source files will be named

“*.cu”. For example, when you build the sample application, “__temp_kernel.cu” will be generated. You

can open it with text-editor to see how it is translated. The figures shown below are the original device

code and the translated device code of the sample application.

 kernel.cl (original kernel code)

CC = g++

-L$(CUDA_INSTALLED_PATH)/lib64 –L$(OPENCL_TO_CUDA)/common/lib

-lcuda –lcudart –lsnuclOC -lpthread

-I$(CUDA_INSTALLED_PATH)/include

__global__ void vecAdd(
 __global int* A, __global int* B, __global int* C, const int N) {
 int i = get_global_id(0);
 C[i] = A[i] + B[i];
}

 __temp_kernel.cu (translated kernel code)

__constant__ char __snucl_const_mem[16384];
extern __shared__ char __snucl_shared_mem[];
__device__ unsigned int __snucl_group_id_offs[2] = {0, 0};
__device__ int get_global_id(int index) {
 switch (index){
 case 0: return (blockIdx.x + __snucl_group_id_offs[0]) *

blockDim.x + threadIdx.x;
 case 1: return blockIdx.y * blockDim.y + threadIdx.y;
 case 2: return blockIdx.z * blockDim.z + threadIdx.z;
 default: return -1;
 };
}

extern “C” __global__ void vecAdd(int* A, int* B, int* C, const int N){
 int id = get_global_id(0);
 C[i] = A[i] + B[i];
}

