
SnuCL-Tr: CUDA to OpenCL 
Quick Start Guide 

Requirements 
The CUDA to OpenCL translator in SnuCL-Tr requires CUDA Toolkit 7.0. You can download the CUDA 

Toolkit from https://developer.nvidia.com/cuda-toolkit-70. 

If cuBLAS is used in your application, you can use clBLAS for the translated OpenCL application. You can 

download clBLAS from https://github.com/clMathLibraries/clBLAS/releases. 

How to Install 
Perform the following steps to install the CUDA to OpenCL translator in SnuCL-Tr and verify the installation. 

1. Untar Source Code 

Download the SnuCL-Tr source code from http://snucl.snu.ac.kr/snucl-tr.html. Untar it on your 

preferred location. 

 

2. LLVM 

You need to configure the LLVM compiler first and then compile the program. It may require a 

long time to compile. 

 

Note: If your system already has clang, then you need to configure and build the LLVM compiler 

manually with following flags. 

 

For example, 

 

3. Set Environment Variables  

There are three environment variables to be set to use the CUDA to OpenCL translator; CUDA_DIR, 

CUDA_TO_OPENCL_DIR, and CLBLAS_DIR. 

Open your .bashrc to edit. 

$ tar xvzf snucl-tr.tar.gz 

$ cd cuda2opencl/llvm-3.3/build 
$ ../configure --enable-optimized 
$ make 
 

CC=gcc CXX=g++ 
 

$ ../configure --enable-optimized CC=gcc CXX=g++ 
$ make CC=gcc CXX=g++ 
 

https://developer.nvidia.com/cuda-toolkit-70
https://github.com/clMathLibraries/clBLAS/releases
http://snucl.snu.ac.kr/snucl-tr.html


 

At the bottom of the file, insert the three lines below. Note that the locations should be 

specified to where you installed each software. 

 

To apply modified environment variables to your current shell environment, go to your home 

directory and execute the following command. 

 

Understanding the CUDA to OpenCL Translator 
In CUDA, the host and the device code are mixed in source files. Our source-to-source translator separates 

the device code and host code from mixed source files. For each source file, the translator generates two 

new files. See the figure below. 

 

For example, assume that we have a CUDA source file named “main.cu”. Our translator generates an 

OpenCL host code file named “main.cu.cpp” and an OpenCL device code file named “main.cu.cl”. Then, a 

native compiler, such as gcc, compiles the host code and generates an executable binary. At this time, our 

OpenCL wrapper library functions are linked to the executable. 

How to Build a Program Using the CUDA to OpenCL Translator 
 Makefile  

In sample directory, a Makefile template for the CUDA to OpenCL translator is provided with a 

sample application. The sample application adds two vectors using CUDA. The result is then 

transferred to the host and verified. 

Variables in Makefile in the sample application are described below. At the last line, Makefile 

includes $(CUDA_TO_OPENCL_DIR)/wrapper/Makefile. If you want to know the detail of how 

the translator generates an executable, you can take a look into that file. 

$ vi $(HOME)/.bashrc 

export CUDA_DIR=/usr/local/cuda 
export CUDA_TO_OPENCL_DIR=$HOME/cuda2opencl 
export CLBLAS_DIR=$HOME/clBLAS 

$ source .bashrc 
 



 TARGET specifies the filename of the executable binary. When you compile your program 

with Makefile, the executable will be generated as the name specified in TARGET. 

 
 

 C_SRCS specifies source files written in C. Files specified here will be translated and 

compiled. If you don’t have any source files written in C, leave it empty. If you have more 

than two files, they should be separated one or more whitespaces. This is the syntax of 

Makefile. 

 
 

 CXX_SRCS specifies source files written in C++. Files specified here will be translated and 

compiled. If you don’t have any source files written in C++, leave it empty. 

 
 

 CU_SRCS specifies source files written in CUDA. Files specified here will be translated and 

compiled. If you don’t have any source files written in CUDA, leave it empty.  

 
 

 EXTERN_LIBS specifies any files that you want to link together when the target is linked. If 

you have a file that does not need to be translated, you can specify that file in this variable. 

This eliminates unnecessary translation processes. 

 
 

 COMMON_CFLAGS specifies any compile flags you want to specify when the source code is 

compiled. This flags are applied when the source files are translated and compiled. 

 

After you have done editing Makefile, just type “make”. The CUDA to OpenCL translator will 

translate files specified in C_SRCS, CXX_SRCS, and CU_SRC and compile those files automatically. 

The executable for OpenCL will be generated in the same directory. Then, you can run the 

executable.  

Note that you should execute the program at the directory where you type “make”. It is because 

the device code files are generated at that directory, and our runtime builds device code files in 

the current working directory. If you execute the program in another directory, our runtime 

cannot build device code files. 

Translation Result for the Sample Application 
When you build your program with the CUDA to OpenCL translator, translated source files will be named 

as “*.cu.cpp” or “*.cu.cl”. For example, when you build the sample application, “vector_add.cu.cpp” and 

“vector_add.cu.cl” will be generated. You can open them with a text editor to see how they are 

TARGET=vector_add 
 

C_SRCS= 
 

CXX_SRCS= 
 

CU_SRCS=vector_add.cu 
 

EXTERN_LIBS=library_a.c library_b.o library_c.a 
 

COMMON_CFLAGS=-I. 
 



translated. The below figure shows the original source code and translated source code of the sample 

application. 

 vector_add.cu (original source code) 

 

  

int* d_A; 
int* d_B; 
int* d_C; 
 
// device code 
__global__ void vec_add(int* A, int* B, int* C, int N) { 
    int i = blockDim.x * blockIdx.x + threadIdx.x; 
    if (i < N) 
        C[i] = A[i] + B[i]; 
} 
 
// host code 
int main(int argc, char** argv) { 
    int N = 100000; 
 
    int* h_A = (int*)malloc(N * sizeof(int)); 
    int* h_B = (int*)malloc(N * sizeof(int)); 
    int* h_C = (int*)malloc(N * sizeof(int)); 
     
    for (int i = 0; i < N; ++i) { 
        h_A[i] = rand(); 
        h_B[i] = rand(); 
    }    
 
    cudaMalloc((void**)&d_A, N * sizeof(int)); 
    cudaMalloc((void**)&d_B, N * sizeof(int)); 
    cudaMalloc((void**)&d_C, N * sizeof(int)); 
 
    cudaMemcpy(d_A, h_A, N * sizeof(int), 
cudaMemcpyHostToDevice); 
    cudaMemcpy(d_B, h_B, N * sizeof(int), 
cudaMemcpyHostToDevice); 
 
    int threads_per_block = 256; 
    int blocks_per_grid = (N + threads_per_block - 1) / 
threads_per_block; 
    vec_add<<<blocks_per_grid, threads_per_block>>>(d_A, d_B, 
d_C, N); 
 
... 



 vector_add.cu.cpp (translated host code) 

 

 vector_add.cu.cl (translated kernel code) 

 

#include "cuda_for_clang.h" 
 
 int *d_A; 
 int *d_B; 
 int *d_C; 
 int main( int argc,  char **argv) { 
    {    
        InitOpenCL(); 
    }    
     int N = 100000; 
     int *h_A = (int *)malloc(N * sizeof(int)); 
     int *h_B = (int *)malloc(N * sizeof(int)); 
     int *h_C = (int *)malloc(N * sizeof(int)); 
    for ( int i = 0; i < N; ++i) { 
        h_A[i] = rand(); 
        h_B[i] = rand(); 
    }    
    cudaMalloc((void **)&d_A, N * sizeof(int)); 
    cudaMalloc((void **)&d_B, N * sizeof(int)); 
    cudaMalloc((void **)&d_C, N * sizeof(int)); 
    cudaMemcpy(d_A, h_A, N * sizeof(int), cudaMemcpyHostToDevice); 
    cudaMemcpy(d_B, h_B, N * sizeof(int), cudaMemcpyHostToDevice); 
     int threads_per_block = 256; 
     int blocks_per_grid = (N + threads_per_block - 1) / 
threads_per_block; 
     cl_kernel vec_add_0; 
    {    
         int file_idx = 
getKernelFileIndex("vector_add.ocl_device.cl"); 
         int kern_idx = getKernelIndex(file_idx, "vec_add"); 
        vec_add_0 = cl_kernels[file_idx][kern_idx]; 
    }    
    cl_error = clSetKernelArg(vec_add_0, 0, sizeof(cl_mem), (void 
*)&d_A); 
    if (cl_error != CL_SUCCESS) 
        fatal_CL(cl_error, __FILE__, __LINE__); 
 
... 

__kernel void vec_add( 
__global int *A, __global int *B, __global int *C, int N) { 

     int i = get_local_size(0) * get_group_id(0) + get_local_id(0); 
    if (i < N) 
        C[i] = A[i] + B[i]; 
} 


